Limits...
A ten-year search for synchronous cells: obstacles, solutions, and practical applications.

Helmstetter CE - Front Microbiol (2015)

Bottom Line: My effort to use synchronously dividing cultures to examine the Escherichia coli cell cycle involved a 10-year struggle with failure after failure punctuated by a few gratifying successes, especially at the end.In this essay, I recount my personal journey in this obsessive experimental pursuit.That narrative is followed by a description of a simplified version of the "baby machine," a technique that was developed to obtain minimally disturbed, synchronously growing E. coli cells.

View Article: PubMed Central - PubMed

Affiliation: Department of Biological Sciences, Florida Institute of Technology Melbourne, FL, USA.

ABSTRACT
My effort to use synchronously dividing cultures to examine the Escherichia coli cell cycle involved a 10-year struggle with failure after failure punctuated by a few gratifying successes, especially at the end. In this essay, I recount my personal journey in this obsessive experimental pursuit. That narrative is followed by a description of a simplified version of the "baby machine," a technique that was developed to obtain minimally disturbed, synchronously growing E. coli cells. Subsequent studies with this methodology led to an understanding of the basic properties of the relationship between chromosome replication and cell division. Accordingly, I end this reminiscence with a simple, fool-proof graphical strategy for deducing the pattern of chromosome replication during the division cycle of cells growing at any rate.

No MeSH data available.


Related in: MedlinePlus

Bacterial baby machine cartoon. Caricature of the technique sketched by Avshalom Falk while a student in the laboratory of Eliora Ron at Tel Aviv University.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4373376&req=5

Figure 1: Bacterial baby machine cartoon. Caricature of the technique sketched by Avshalom Falk while a student in the laboratory of Eliora Ron at Tel Aviv University.

Mentions: Development and testing of this new approach progressed rapidly, with the final configuration consisting of simply filtering the cells onto a nitrocellulose membrane filter, inverting the filter apparatus, pumping medium through the filter, and collecting the cells that fell off (Helmstetter and Cummings, 1964). It eventually became known as the “baby machine,” and depicted with humor (Figure 1). I don't recall who first called it by that name, but it wasn't me since I continued to dub it “membrane elution,” true to my conservative writing style.


A ten-year search for synchronous cells: obstacles, solutions, and practical applications.

Helmstetter CE - Front Microbiol (2015)

Bacterial baby machine cartoon. Caricature of the technique sketched by Avshalom Falk while a student in the laboratory of Eliora Ron at Tel Aviv University.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4373376&req=5

Figure 1: Bacterial baby machine cartoon. Caricature of the technique sketched by Avshalom Falk while a student in the laboratory of Eliora Ron at Tel Aviv University.
Mentions: Development and testing of this new approach progressed rapidly, with the final configuration consisting of simply filtering the cells onto a nitrocellulose membrane filter, inverting the filter apparatus, pumping medium through the filter, and collecting the cells that fell off (Helmstetter and Cummings, 1964). It eventually became known as the “baby machine,” and depicted with humor (Figure 1). I don't recall who first called it by that name, but it wasn't me since I continued to dub it “membrane elution,” true to my conservative writing style.

Bottom Line: My effort to use synchronously dividing cultures to examine the Escherichia coli cell cycle involved a 10-year struggle with failure after failure punctuated by a few gratifying successes, especially at the end.In this essay, I recount my personal journey in this obsessive experimental pursuit.That narrative is followed by a description of a simplified version of the "baby machine," a technique that was developed to obtain minimally disturbed, synchronously growing E. coli cells.

View Article: PubMed Central - PubMed

Affiliation: Department of Biological Sciences, Florida Institute of Technology Melbourne, FL, USA.

ABSTRACT
My effort to use synchronously dividing cultures to examine the Escherichia coli cell cycle involved a 10-year struggle with failure after failure punctuated by a few gratifying successes, especially at the end. In this essay, I recount my personal journey in this obsessive experimental pursuit. That narrative is followed by a description of a simplified version of the "baby machine," a technique that was developed to obtain minimally disturbed, synchronously growing E. coli cells. Subsequent studies with this methodology led to an understanding of the basic properties of the relationship between chromosome replication and cell division. Accordingly, I end this reminiscence with a simple, fool-proof graphical strategy for deducing the pattern of chromosome replication during the division cycle of cells growing at any rate.

No MeSH data available.


Related in: MedlinePlus