Limits...
Temporal self-regulation theory: a neurobiologically informed model for physical activity behavior.

Hall PA, Fong GT - Front Hum Neurosci (2015)

Bottom Line: Most importantly, the TST model proposes positive feedback loops linking executive function (EF) and the performance of physical activity behavior.Specifically, those with relatively stronger executive control (and optimized brain structures supporting it, such as the dorsolateral prefrontal cortex (PFC)) are able to implement physical activity with more consistency than others, which in turn serves to strengthen the executive control network itself.The TST model has the potential to explain everyday variants of incidental physical activity, sport-related excellence via capacity for deliberate practice, and variability in the propensity to schedule and implement exercise routines.

View Article: PubMed Central - PubMed

Affiliation: Faculty of Applied Health Sciences, University of Waterloo Waterloo, ON, Canada.

ABSTRACT
Dominant explanatory models for physical activity behavior are limited by the exclusion of several important components, including temporal dynamics, ecological forces, and neurobiological factors. The latter may be a critical omission, given the relevance of several aspects of cognitive function for the self-regulatory processes that are likely required for consistent implementation of physical activity behavior in everyday life. This narrative review introduces temporal self-regulation theory (TST; Hall and Fong, 2007, 2013) as a new explanatory model for physical activity behavior. Important features of the model include consideration of the default status of the physical activity behavior, as well as the disproportionate influence of temporally proximal behavioral contingencies. Most importantly, the TST model proposes positive feedback loops linking executive function (EF) and the performance of physical activity behavior. Specifically, those with relatively stronger executive control (and optimized brain structures supporting it, such as the dorsolateral prefrontal cortex (PFC)) are able to implement physical activity with more consistency than others, which in turn serves to strengthen the executive control network itself. The TST model has the potential to explain everyday variants of incidental physical activity, sport-related excellence via capacity for deliberate practice, and variability in the propensity to schedule and implement exercise routines.

No MeSH data available.


Related in: MedlinePlus

Inverted hyperbolic discount curves illustrating a preference reversal involving forgoing larger later (health benefits, improved appearance) for smaller sooner (convenience, indulgence) contingencies when choosing between exercise and a competing enjoyable activity, such as video game playing. The y axis depicts subjective value of a reward associated with each of the activities at each time point. The x axis depicts the relative immediacy of receipt of each reward. At point a when both rewards are removed in time, the LL rewards of physical activity are preferred (i.e., have higher subjective value) than the SS rewards of computer game playing. However, with passage of time as SS becomes more immediately available, a spike in value is experienced. At b an indifference point is reached at wherein the value of SS (video game playing) and LL (exercising) are equivalent; at point c, with video game playing immediately available, its subjective value surges past that of exercise (despite having been initially less preferred). Adapted from Ainslie (2013).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4373277&req=5

Figure 3: Inverted hyperbolic discount curves illustrating a preference reversal involving forgoing larger later (health benefits, improved appearance) for smaller sooner (convenience, indulgence) contingencies when choosing between exercise and a competing enjoyable activity, such as video game playing. The y axis depicts subjective value of a reward associated with each of the activities at each time point. The x axis depicts the relative immediacy of receipt of each reward. At point a when both rewards are removed in time, the LL rewards of physical activity are preferred (i.e., have higher subjective value) than the SS rewards of computer game playing. However, with passage of time as SS becomes more immediately available, a spike in value is experienced. At b an indifference point is reached at wherein the value of SS (video game playing) and LL (exercising) are equivalent; at point c, with video game playing immediately available, its subjective value surges past that of exercise (despite having been initially less preferred). Adapted from Ainslie (2013).

Mentions: Further back in the model, TST proposes determinants of intention itself, which are thought to be reducible to temporally anchored perceptions of expectancy and value. The latter parameter is assumed to be hyperbolic in relation to time such that outcomes that are temporally nearer are of more value, with immediacy associated with a very sharp spike in value (Figure 3, adapted from Ainslie, 2013). This hyperbolic shape to the value curve explains the tendency for preference reversals to occur (i.e., the tendency to make resolutions to be active on New Year’s Eve, but then when facing the time to attend the first fitness class, preferring a competing sedentary activity instead).


Temporal self-regulation theory: a neurobiologically informed model for physical activity behavior.

Hall PA, Fong GT - Front Hum Neurosci (2015)

Inverted hyperbolic discount curves illustrating a preference reversal involving forgoing larger later (health benefits, improved appearance) for smaller sooner (convenience, indulgence) contingencies when choosing between exercise and a competing enjoyable activity, such as video game playing. The y axis depicts subjective value of a reward associated with each of the activities at each time point. The x axis depicts the relative immediacy of receipt of each reward. At point a when both rewards are removed in time, the LL rewards of physical activity are preferred (i.e., have higher subjective value) than the SS rewards of computer game playing. However, with passage of time as SS becomes more immediately available, a spike in value is experienced. At b an indifference point is reached at wherein the value of SS (video game playing) and LL (exercising) are equivalent; at point c, with video game playing immediately available, its subjective value surges past that of exercise (despite having been initially less preferred). Adapted from Ainslie (2013).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4373277&req=5

Figure 3: Inverted hyperbolic discount curves illustrating a preference reversal involving forgoing larger later (health benefits, improved appearance) for smaller sooner (convenience, indulgence) contingencies when choosing between exercise and a competing enjoyable activity, such as video game playing. The y axis depicts subjective value of a reward associated with each of the activities at each time point. The x axis depicts the relative immediacy of receipt of each reward. At point a when both rewards are removed in time, the LL rewards of physical activity are preferred (i.e., have higher subjective value) than the SS rewards of computer game playing. However, with passage of time as SS becomes more immediately available, a spike in value is experienced. At b an indifference point is reached at wherein the value of SS (video game playing) and LL (exercising) are equivalent; at point c, with video game playing immediately available, its subjective value surges past that of exercise (despite having been initially less preferred). Adapted from Ainslie (2013).
Mentions: Further back in the model, TST proposes determinants of intention itself, which are thought to be reducible to temporally anchored perceptions of expectancy and value. The latter parameter is assumed to be hyperbolic in relation to time such that outcomes that are temporally nearer are of more value, with immediacy associated with a very sharp spike in value (Figure 3, adapted from Ainslie, 2013). This hyperbolic shape to the value curve explains the tendency for preference reversals to occur (i.e., the tendency to make resolutions to be active on New Year’s Eve, but then when facing the time to attend the first fitness class, preferring a competing sedentary activity instead).

Bottom Line: Most importantly, the TST model proposes positive feedback loops linking executive function (EF) and the performance of physical activity behavior.Specifically, those with relatively stronger executive control (and optimized brain structures supporting it, such as the dorsolateral prefrontal cortex (PFC)) are able to implement physical activity with more consistency than others, which in turn serves to strengthen the executive control network itself.The TST model has the potential to explain everyday variants of incidental physical activity, sport-related excellence via capacity for deliberate practice, and variability in the propensity to schedule and implement exercise routines.

View Article: PubMed Central - PubMed

Affiliation: Faculty of Applied Health Sciences, University of Waterloo Waterloo, ON, Canada.

ABSTRACT
Dominant explanatory models for physical activity behavior are limited by the exclusion of several important components, including temporal dynamics, ecological forces, and neurobiological factors. The latter may be a critical omission, given the relevance of several aspects of cognitive function for the self-regulatory processes that are likely required for consistent implementation of physical activity behavior in everyday life. This narrative review introduces temporal self-regulation theory (TST; Hall and Fong, 2007, 2013) as a new explanatory model for physical activity behavior. Important features of the model include consideration of the default status of the physical activity behavior, as well as the disproportionate influence of temporally proximal behavioral contingencies. Most importantly, the TST model proposes positive feedback loops linking executive function (EF) and the performance of physical activity behavior. Specifically, those with relatively stronger executive control (and optimized brain structures supporting it, such as the dorsolateral prefrontal cortex (PFC)) are able to implement physical activity with more consistency than others, which in turn serves to strengthen the executive control network itself. The TST model has the potential to explain everyday variants of incidental physical activity, sport-related excellence via capacity for deliberate practice, and variability in the propensity to schedule and implement exercise routines.

No MeSH data available.


Related in: MedlinePlus