Limits...
A computerized tablet with visual feedback of hand position for functional magnetic resonance imaging.

Karimpoor M, Tam F, Strother SC, Fischer CE, Schweizer TA, Graham SJ - Front Hum Neurosci (2015)

Bottom Line: A real-time system was thus developed to provide VFHP and integrated with the tablet in an augmented reality display.The effectiveness of the system was initially tested in young healthy adults who performed various handwriting tasks in front of a computer display with and without VFHP.Quantitative analysis of the behavioral results indicated improved writing performance with VFHP.

View Article: PubMed Central - PubMed

Affiliation: Graham Laboratory, Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre Toronto, ON, Canada ; Department of Medical Biophysics, University of Toronto Faculty of Medicine Toronto, ON, Canada.

ABSTRACT
Neuropsychological tests behavioral tasks that very commonly involve handwriting and drawing are widely used in the clinic to detect abnormal brain function. Functional magnetic resonance imaging (fMRI) may be useful in increasing the specificity of such tests. However, performing complex pen-and-paper tests during fMRI involves engineering challenges. Previously, we developed an fMRI-compatible, computerized tablet system to address this issue. However, the tablet did not include visual feedback of hand position (VFHP), a human factors component that may be important for fMRI of certain patient populations. A real-time system was thus developed to provide VFHP and integrated with the tablet in an augmented reality display. The effectiveness of the system was initially tested in young healthy adults who performed various handwriting tasks in front of a computer display with and without VFHP. Pilot fMRI of writing tasks were performed by two representative individuals with and without VFHP. Quantitative analysis of the behavioral results indicated improved writing performance with VFHP. The pilot fMRI results suggest that writing with VFHP requires less neural resources compared to the without VFHP condition, to maintain similar behavior. Thus, the tablet system with VFHP is recommended for future fMRI studies involving patients with impaired brain function and where ecologically valid behavior is important.

No MeSH data available.


Brain activity for a single participant copying paragraphs vs. rest, for the two different tablet conditions (“with VFHP” and “without VFHP”). Axial slice locations are indicated by z values in Talairach coordinates. R = right, L = left.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4373274&req=5

Figure 7: Brain activity for a single participant copying paragraphs vs. rest, for the two different tablet conditions (“with VFHP” and “without VFHP”). Axial slice locations are indicated by z values in Talairach coordinates. R = right, L = left.

Mentions: Figures 7, 8 shows brain activity in the form of SPMs for participants using the tablet with and without VFHP. Both participants performed with legible handwriting and with negligible amounts of head motion during fMRI, during the two tablet conditions. For both participants and both tablet conditions, the temporal standard deviations of the predominant components of motion “nodding” rotation and displacement in the superior to inferior direction did not exceed 0.4° and 0.4 mm, respectively, as estimated from the motion correction algorithm used in fMRI data pre-processing. Color overlays illustrate statistically significant activity that was generated while paragraphs (Figure 7) and grocery lists (Figure 8) were copied in relation to visual fixation. Similar findings were observed in both cases: when participants used the tablet with VFHP, brain activity was limited to a relatively small set of focal regions, as typified by complex sensorimotor tasks. These focal regions included areas in the left-lateralized primary somatosensory and motor cortex; as well as the bilateral supplementary motor area; bilateral parietal areas, and bilateral primary visual and visual association areas. In comparison, performance without VFHP was associated with much more extensive activity, characterized by areal expansion of the regions identified above, as well as the inclusion of additional brain regions such as the bilateral thalamus and basal ganglia, and right-lateralized prefrontal cortex.


A computerized tablet with visual feedback of hand position for functional magnetic resonance imaging.

Karimpoor M, Tam F, Strother SC, Fischer CE, Schweizer TA, Graham SJ - Front Hum Neurosci (2015)

Brain activity for a single participant copying paragraphs vs. rest, for the two different tablet conditions (“with VFHP” and “without VFHP”). Axial slice locations are indicated by z values in Talairach coordinates. R = right, L = left.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4373274&req=5

Figure 7: Brain activity for a single participant copying paragraphs vs. rest, for the two different tablet conditions (“with VFHP” and “without VFHP”). Axial slice locations are indicated by z values in Talairach coordinates. R = right, L = left.
Mentions: Figures 7, 8 shows brain activity in the form of SPMs for participants using the tablet with and without VFHP. Both participants performed with legible handwriting and with negligible amounts of head motion during fMRI, during the two tablet conditions. For both participants and both tablet conditions, the temporal standard deviations of the predominant components of motion “nodding” rotation and displacement in the superior to inferior direction did not exceed 0.4° and 0.4 mm, respectively, as estimated from the motion correction algorithm used in fMRI data pre-processing. Color overlays illustrate statistically significant activity that was generated while paragraphs (Figure 7) and grocery lists (Figure 8) were copied in relation to visual fixation. Similar findings were observed in both cases: when participants used the tablet with VFHP, brain activity was limited to a relatively small set of focal regions, as typified by complex sensorimotor tasks. These focal regions included areas in the left-lateralized primary somatosensory and motor cortex; as well as the bilateral supplementary motor area; bilateral parietal areas, and bilateral primary visual and visual association areas. In comparison, performance without VFHP was associated with much more extensive activity, characterized by areal expansion of the regions identified above, as well as the inclusion of additional brain regions such as the bilateral thalamus and basal ganglia, and right-lateralized prefrontal cortex.

Bottom Line: A real-time system was thus developed to provide VFHP and integrated with the tablet in an augmented reality display.The effectiveness of the system was initially tested in young healthy adults who performed various handwriting tasks in front of a computer display with and without VFHP.Quantitative analysis of the behavioral results indicated improved writing performance with VFHP.

View Article: PubMed Central - PubMed

Affiliation: Graham Laboratory, Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre Toronto, ON, Canada ; Department of Medical Biophysics, University of Toronto Faculty of Medicine Toronto, ON, Canada.

ABSTRACT
Neuropsychological tests behavioral tasks that very commonly involve handwriting and drawing are widely used in the clinic to detect abnormal brain function. Functional magnetic resonance imaging (fMRI) may be useful in increasing the specificity of such tests. However, performing complex pen-and-paper tests during fMRI involves engineering challenges. Previously, we developed an fMRI-compatible, computerized tablet system to address this issue. However, the tablet did not include visual feedback of hand position (VFHP), a human factors component that may be important for fMRI of certain patient populations. A real-time system was thus developed to provide VFHP and integrated with the tablet in an augmented reality display. The effectiveness of the system was initially tested in young healthy adults who performed various handwriting tasks in front of a computer display with and without VFHP. Pilot fMRI of writing tasks were performed by two representative individuals with and without VFHP. Quantitative analysis of the behavioral results indicated improved writing performance with VFHP. The pilot fMRI results suggest that writing with VFHP requires less neural resources compared to the without VFHP condition, to maintain similar behavior. Thus, the tablet system with VFHP is recommended for future fMRI studies involving patients with impaired brain function and where ecologically valid behavior is important.

No MeSH data available.