Limits...
Nitrogen uptake and nitrogen fertilizer recovery in old and modern wheat genotypes grown in the presence or absence of interspecific competition.

Ruisi P, Frangipane B, Amato G, Frenda AS, Plaia A, Giambalvo D, Saia S - Front Plant Sci (2015)

Bottom Line: A field experiment, a split-plot design with four replications, was conducted during two consecutive growing seasons in a typical Mediterranean environment.The presence of competition, compared to competitor-free conditions, resulted in reductions in grain yield (49%), total N uptake (29%), and an (15)N fertilizer recovery fraction (32%) that were on average markedly higher in modern varieties than in old ones.Both biomass and grain reductions were strongly related to the biomass of the competitor (correlation coefficients > 0.95), which ranged from 135 to 573 g m(-2).

View Article: PubMed Central - PubMed

Affiliation: Dipartimento di Scienze Agrarie e Forestali, Università degli Studi di Palermo Palermo, Italy.

ABSTRACT
Choosing genotypes with a high capacity for taking up nitrogen (N) from the soil and the ability to efficiently compete with weeds for this nutrient is essential to increasing the sustainability of cropping systems that are less dependent on auxiliary inputs. This research aimed to verify whether differences exist in N uptake and N fertilizer recovery capacity among wheat genotypes and, if so, whether these differences are related to a different competitive ability against weeds of wheat genotypes. To this end, 12 genotypes, varying widely in morphological traits and year of release, were grown in the presence or absence of interspecific competition (using Avena sativa L. as a surrogate weed). Isotopic tracer (15)N was used to measure the fertilizer N uptake efficiencies of the wheat genotypes and weed. A field experiment, a split-plot design with four replications, was conducted during two consecutive growing seasons in a typical Mediterranean environment. In the absence of interspecific competition, few differences in either total N uptake (range: 98-112 kg N ha(-1)) or the (15)N fertilizer recovery fraction (range: 30.0-36.7%) were observed among the wheat genotypes. The presence of competition, compared to competitor-free conditions, resulted in reductions in grain yield (49%), total N uptake (29%), and an (15)N fertilizer recovery fraction (32%) that were on average markedly higher in modern varieties than in old ones. Both biomass and grain reductions were strongly related to the biomass of the competitor (correlation coefficients > 0.95), which ranged from 135 to 573 g m(-2). Variations in both grain and biomass yield due to interspecific competition were significantly correlated with percentage of soil cover and leaf area at tillering, plant height at heading, and total N uptake, thus highlighting that the ability to take up N from the soil played a certain role in determining the different competitive abilities against weed of the genotypes.

No MeSH data available.


Related in: MedlinePlus

The relationship between weed biomass and percent variation in biomass (A) and grain yield (B) of wheat genotypes (red circle, “old” genotypes; gray circles, “modern” varieties) in the presence of interspecific competition with respect to the absence of competition at maturity. 1, Biancuccia; 2, Maiorcone; 3, Realforte; 4, Russello; 5, Scorsonera; 6, Cappelli; 7, Capeiti; 8, Creso; 9, Simeto; 10, Valbelice; 11, Iride; 12, Claudio.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4373253&req=5

Figure 3: The relationship between weed biomass and percent variation in biomass (A) and grain yield (B) of wheat genotypes (red circle, “old” genotypes; gray circles, “modern” varieties) in the presence of interspecific competition with respect to the absence of competition at maturity. 1, Biancuccia; 2, Maiorcone; 3, Realforte; 4, Russello; 5, Scorsonera; 6, Cappelli; 7, Capeiti; 8, Creso; 9, Simeto; 10, Valbelice; 11, Iride; 12, Claudio.

Mentions: Wheat genotypes differed widely in plant height (Table 4), which ranged on average from 76 cm (Simeto) to 152 cm (Russello). All genotypes taller than 100 cm were subjected to lodging that in some genotypes appeared to be particularly severe. Interspecific competition markedly reduced biomass and grain yields, harvest index, and 1000-seed weight; such decreases were greater in the modern varieties than in the old genotypes. In particular, interspecific competition caused strong reductions in the modern varieties (47 and 62%, respectively, for biomass and grain yield) and moderate reductions in the old genotypes (18 and 26%, respectively, for biomass and grain yield). As observed at both tillering and heading, both biomass, and grain reductions were related to the biomass of the competitor (Figure 3), which ranged from 135 g m−2 (Maiorcone) to 573 g m−2 (Simeto). On the whole, the surrogate weed accumulated more biomass when grown with the modern genotypes than the old ones. Among the modern varieties, the surrogate weed produced less biomass when grown with Valbelice (378 g m−2) and Capeiti (397 g m−2), the tallest of the modern cultivars, than when grown with the other wheat genotypes.


Nitrogen uptake and nitrogen fertilizer recovery in old and modern wheat genotypes grown in the presence or absence of interspecific competition.

Ruisi P, Frangipane B, Amato G, Frenda AS, Plaia A, Giambalvo D, Saia S - Front Plant Sci (2015)

The relationship between weed biomass and percent variation in biomass (A) and grain yield (B) of wheat genotypes (red circle, “old” genotypes; gray circles, “modern” varieties) in the presence of interspecific competition with respect to the absence of competition at maturity. 1, Biancuccia; 2, Maiorcone; 3, Realforte; 4, Russello; 5, Scorsonera; 6, Cappelli; 7, Capeiti; 8, Creso; 9, Simeto; 10, Valbelice; 11, Iride; 12, Claudio.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4373253&req=5

Figure 3: The relationship between weed biomass and percent variation in biomass (A) and grain yield (B) of wheat genotypes (red circle, “old” genotypes; gray circles, “modern” varieties) in the presence of interspecific competition with respect to the absence of competition at maturity. 1, Biancuccia; 2, Maiorcone; 3, Realforte; 4, Russello; 5, Scorsonera; 6, Cappelli; 7, Capeiti; 8, Creso; 9, Simeto; 10, Valbelice; 11, Iride; 12, Claudio.
Mentions: Wheat genotypes differed widely in plant height (Table 4), which ranged on average from 76 cm (Simeto) to 152 cm (Russello). All genotypes taller than 100 cm were subjected to lodging that in some genotypes appeared to be particularly severe. Interspecific competition markedly reduced biomass and grain yields, harvest index, and 1000-seed weight; such decreases were greater in the modern varieties than in the old genotypes. In particular, interspecific competition caused strong reductions in the modern varieties (47 and 62%, respectively, for biomass and grain yield) and moderate reductions in the old genotypes (18 and 26%, respectively, for biomass and grain yield). As observed at both tillering and heading, both biomass, and grain reductions were related to the biomass of the competitor (Figure 3), which ranged from 135 g m−2 (Maiorcone) to 573 g m−2 (Simeto). On the whole, the surrogate weed accumulated more biomass when grown with the modern genotypes than the old ones. Among the modern varieties, the surrogate weed produced less biomass when grown with Valbelice (378 g m−2) and Capeiti (397 g m−2), the tallest of the modern cultivars, than when grown with the other wheat genotypes.

Bottom Line: A field experiment, a split-plot design with four replications, was conducted during two consecutive growing seasons in a typical Mediterranean environment.The presence of competition, compared to competitor-free conditions, resulted in reductions in grain yield (49%), total N uptake (29%), and an (15)N fertilizer recovery fraction (32%) that were on average markedly higher in modern varieties than in old ones.Both biomass and grain reductions were strongly related to the biomass of the competitor (correlation coefficients > 0.95), which ranged from 135 to 573 g m(-2).

View Article: PubMed Central - PubMed

Affiliation: Dipartimento di Scienze Agrarie e Forestali, Università degli Studi di Palermo Palermo, Italy.

ABSTRACT
Choosing genotypes with a high capacity for taking up nitrogen (N) from the soil and the ability to efficiently compete with weeds for this nutrient is essential to increasing the sustainability of cropping systems that are less dependent on auxiliary inputs. This research aimed to verify whether differences exist in N uptake and N fertilizer recovery capacity among wheat genotypes and, if so, whether these differences are related to a different competitive ability against weeds of wheat genotypes. To this end, 12 genotypes, varying widely in morphological traits and year of release, were grown in the presence or absence of interspecific competition (using Avena sativa L. as a surrogate weed). Isotopic tracer (15)N was used to measure the fertilizer N uptake efficiencies of the wheat genotypes and weed. A field experiment, a split-plot design with four replications, was conducted during two consecutive growing seasons in a typical Mediterranean environment. In the absence of interspecific competition, few differences in either total N uptake (range: 98-112 kg N ha(-1)) or the (15)N fertilizer recovery fraction (range: 30.0-36.7%) were observed among the wheat genotypes. The presence of competition, compared to competitor-free conditions, resulted in reductions in grain yield (49%), total N uptake (29%), and an (15)N fertilizer recovery fraction (32%) that were on average markedly higher in modern varieties than in old ones. Both biomass and grain reductions were strongly related to the biomass of the competitor (correlation coefficients > 0.95), which ranged from 135 to 573 g m(-2). Variations in both grain and biomass yield due to interspecific competition were significantly correlated with percentage of soil cover and leaf area at tillering, plant height at heading, and total N uptake, thus highlighting that the ability to take up N from the soil played a certain role in determining the different competitive abilities against weed of the genotypes.

No MeSH data available.


Related in: MedlinePlus