Limits...
Hsf and Hsp gene families in Populus: genome-wide identification, organization and correlated expression during development and in stress responses.

Zhang J, Liu B, Li J, Zhang L, Wang Y, Zheng H, Lu M, Chen J - BMC Genomics (2015)

Bottom Line: In Populus trichocarpa, we identified 42 paralogous pairs, 66.7% resulting from a whole genome duplication.A coexpression network between Populus Hsf and Hsp genes was generated based on their expression.Coordinated relationships were validated by transient overexpression and subsequent qPCR analyses.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China. zhang007jin@163.com.

ABSTRACT

Background: Heat shock proteins (Hsps) are molecular chaperones that are involved in many normal cellular processes and stress responses, and heat shock factors (Hsfs) are the transcriptional activators of Hsps. Hsfs and Hsps are widely coordinated in various biological processes. Although the roles of Hsfs and Hsps in stress responses have been well characterized in Arabidopsis, their roles in perennial woody species undergoing various environmental stresses remain unclear.

Results: Here, a comprehensive identification and analysis of Hsf and Hsp families in poplars is presented. In Populus trichocarpa, we identified 42 paralogous pairs, 66.7% resulting from a whole genome duplication. The gene structure and motif composition are relatively conserved in each subfamily. Microarray and quantitative real-time RT-PCR analyses showed that most of the Populus Hsf and Hsp genes are differentially expressed upon exposure to various stresses. A coexpression network between Populus Hsf and Hsp genes was generated based on their expression. Coordinated relationships were validated by transient overexpression and subsequent qPCR analyses.

Conclusions: The comprehensive analysis indicates that different sets of PtHsps are downstream of particular PtHsfs and provides a basis for functional studies aimed at revealing the roles of these families in poplar development and stress responses.

Show MeSH

Related in: MedlinePlus

qRT-PCR analysis of selectedPopulus HsfsandHspsin different tissues. The relative mRNA abundance of selected seven Hsfs, three sHsps, three Hsp60s, three Hsp70s and three Hsp100s was normalized with respect to two reference genes PtActin and PtTubulin in five different tissues. Bars represent standard deviations (SD) of three technical replicates. YL, young leaves; ML, mature leaves; PS, primary stem; SS, secondary stem; R, roots. Bars with the same letter are not significantly different according to Duncan test and Fisher’s protected LSD test (P < 0.05).
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4373061&req=5

Fig7: qRT-PCR analysis of selectedPopulus HsfsandHspsin different tissues. The relative mRNA abundance of selected seven Hsfs, three sHsps, three Hsp60s, three Hsp70s and three Hsp100s was normalized with respect to two reference genes PtActin and PtTubulin in five different tissues. Bars represent standard deviations (SD) of three technical replicates. YL, young leaves; ML, mature leaves; PS, primary stem; SS, secondary stem; R, roots. Bars with the same letter are not significantly different according to Duncan test and Fisher’s protected LSD test (P < 0.05).

Mentions: To confirm the expression profiles of Populus Hsf and Hsp genes obtained from the microarray and RNA-seq data, a qRT-PCR analysis of selected Hsf and Hsp genes (seven Hsf, three sHsp, three Hsp60, three Hsp70, and three Hsp100) was performed on five different tissues (YL - young leaves, ML - mature leaves, PS - primary stem, SS - secondary stem, and R - root) of hybrid poplar. The gene expression patterns were mostly consistent with the microarray data (Figures 5 and 7).Figure 7


Hsf and Hsp gene families in Populus: genome-wide identification, organization and correlated expression during development and in stress responses.

Zhang J, Liu B, Li J, Zhang L, Wang Y, Zheng H, Lu M, Chen J - BMC Genomics (2015)

qRT-PCR analysis of selectedPopulus HsfsandHspsin different tissues. The relative mRNA abundance of selected seven Hsfs, three sHsps, three Hsp60s, three Hsp70s and three Hsp100s was normalized with respect to two reference genes PtActin and PtTubulin in five different tissues. Bars represent standard deviations (SD) of three technical replicates. YL, young leaves; ML, mature leaves; PS, primary stem; SS, secondary stem; R, roots. Bars with the same letter are not significantly different according to Duncan test and Fisher’s protected LSD test (P < 0.05).
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4373061&req=5

Fig7: qRT-PCR analysis of selectedPopulus HsfsandHspsin different tissues. The relative mRNA abundance of selected seven Hsfs, three sHsps, three Hsp60s, three Hsp70s and three Hsp100s was normalized with respect to two reference genes PtActin and PtTubulin in five different tissues. Bars represent standard deviations (SD) of three technical replicates. YL, young leaves; ML, mature leaves; PS, primary stem; SS, secondary stem; R, roots. Bars with the same letter are not significantly different according to Duncan test and Fisher’s protected LSD test (P < 0.05).
Mentions: To confirm the expression profiles of Populus Hsf and Hsp genes obtained from the microarray and RNA-seq data, a qRT-PCR analysis of selected Hsf and Hsp genes (seven Hsf, three sHsp, three Hsp60, three Hsp70, and three Hsp100) was performed on five different tissues (YL - young leaves, ML - mature leaves, PS - primary stem, SS - secondary stem, and R - root) of hybrid poplar. The gene expression patterns were mostly consistent with the microarray data (Figures 5 and 7).Figure 7

Bottom Line: In Populus trichocarpa, we identified 42 paralogous pairs, 66.7% resulting from a whole genome duplication.A coexpression network between Populus Hsf and Hsp genes was generated based on their expression.Coordinated relationships were validated by transient overexpression and subsequent qPCR analyses.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China. zhang007jin@163.com.

ABSTRACT

Background: Heat shock proteins (Hsps) are molecular chaperones that are involved in many normal cellular processes and stress responses, and heat shock factors (Hsfs) are the transcriptional activators of Hsps. Hsfs and Hsps are widely coordinated in various biological processes. Although the roles of Hsfs and Hsps in stress responses have been well characterized in Arabidopsis, their roles in perennial woody species undergoing various environmental stresses remain unclear.

Results: Here, a comprehensive identification and analysis of Hsf and Hsp families in poplars is presented. In Populus trichocarpa, we identified 42 paralogous pairs, 66.7% resulting from a whole genome duplication. The gene structure and motif composition are relatively conserved in each subfamily. Microarray and quantitative real-time RT-PCR analyses showed that most of the Populus Hsf and Hsp genes are differentially expressed upon exposure to various stresses. A coexpression network between Populus Hsf and Hsp genes was generated based on their expression. Coordinated relationships were validated by transient overexpression and subsequent qPCR analyses.

Conclusions: The comprehensive analysis indicates that different sets of PtHsps are downstream of particular PtHsfs and provides a basis for functional studies aimed at revealing the roles of these families in poplar development and stress responses.

Show MeSH
Related in: MedlinePlus