Limits...
On disciplinary fragmentation and scientific progress.

Balietti S, Mäs M, Helbing D - PLoS ONE (2015)

Bottom Line: We found that fragmentation critically limits scientific progress.Strikingly, there is no effect in the opposite causal direction.What is more, our results shows that at the heart of the mechanisms driving scientific progress we find (i) social interactions, and (ii) peer disagreement.

View Article: PubMed Central - PubMed

Affiliation: Professorship of Computational Social Science, ETH Zurich, Switzerland.

ABSTRACT
Why are some scientific disciplines, such as sociology and psychology, more fragmented into conflicting schools of thought than other fields, such as physics and biology? Furthermore, why does high fragmentation tend to coincide with limited scientific progress? We analyzed a formal model where scientists seek to identify the correct answer to a research question. Each scientist is influenced by three forces: (i) signals received from the correct answer to the question; (ii) peer influence; and (iii) noise. We observed the emergence of different macroscopic patterns of collective exploration, and studied how the three forces affect the degree to which disciplines fall apart into divergent fragments, or so-called "schools of thought". We conducted two simulation experiments where we tested (A) whether the three forces foster or hamper progress, and (B) whether disciplinary fragmentation causally affects scientific progress and vice versa. We found that fragmentation critically limits scientific progress. Strikingly, there is no effect in the opposite causal direction. What is more, our results shows that at the heart of the mechanisms driving scientific progress we find (i) social interactions, and (ii) peer disagreement. In fact, fragmentation is increased and progress limited if the simulated scientists are open to influence only by peers with very similar views, or when within-school diversity is lost. Finally, disciplines where the scientists received strong signals from the correct answer were less fragmented and experienced faster progress. We discuss model's implications for the design of social institutions fostering interdisciplinarity and participation in science.

Show MeSH

Related in: MedlinePlus

Scatter plot clustering vs progress.All data points are observations produced by Experiment 1.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4366147&req=5

pone.0118747.g009: Scatter plot clustering vs progress.All data points are observations produced by Experiment 1.

Mentions: Fig. 9 informs about the degree to which fragmentation and progress correlated in Experiment 1. Each dot of the scatter plot shows the degree of fragmentation and progress at the end of one simulation run. One can see that those runs where the disciplines consisted of many fragmented clusters tended to be characterized by limited progress (high average distance from truth). This shows that the formal model is able to replicate the empirical observation that progress and fragmentation are correlated.


On disciplinary fragmentation and scientific progress.

Balietti S, Mäs M, Helbing D - PLoS ONE (2015)

Scatter plot clustering vs progress.All data points are observations produced by Experiment 1.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4366147&req=5

pone.0118747.g009: Scatter plot clustering vs progress.All data points are observations produced by Experiment 1.
Mentions: Fig. 9 informs about the degree to which fragmentation and progress correlated in Experiment 1. Each dot of the scatter plot shows the degree of fragmentation and progress at the end of one simulation run. One can see that those runs where the disciplines consisted of many fragmented clusters tended to be characterized by limited progress (high average distance from truth). This shows that the formal model is able to replicate the empirical observation that progress and fragmentation are correlated.

Bottom Line: We found that fragmentation critically limits scientific progress.Strikingly, there is no effect in the opposite causal direction.What is more, our results shows that at the heart of the mechanisms driving scientific progress we find (i) social interactions, and (ii) peer disagreement.

View Article: PubMed Central - PubMed

Affiliation: Professorship of Computational Social Science, ETH Zurich, Switzerland.

ABSTRACT
Why are some scientific disciplines, such as sociology and psychology, more fragmented into conflicting schools of thought than other fields, such as physics and biology? Furthermore, why does high fragmentation tend to coincide with limited scientific progress? We analyzed a formal model where scientists seek to identify the correct answer to a research question. Each scientist is influenced by three forces: (i) signals received from the correct answer to the question; (ii) peer influence; and (iii) noise. We observed the emergence of different macroscopic patterns of collective exploration, and studied how the three forces affect the degree to which disciplines fall apart into divergent fragments, or so-called "schools of thought". We conducted two simulation experiments where we tested (A) whether the three forces foster or hamper progress, and (B) whether disciplinary fragmentation causally affects scientific progress and vice versa. We found that fragmentation critically limits scientific progress. Strikingly, there is no effect in the opposite causal direction. What is more, our results shows that at the heart of the mechanisms driving scientific progress we find (i) social interactions, and (ii) peer disagreement. In fact, fragmentation is increased and progress limited if the simulated scientists are open to influence only by peers with very similar views, or when within-school diversity is lost. Finally, disciplines where the scientists received strong signals from the correct answer were less fragmented and experienced faster progress. We discuss model's implications for the design of social institutions fostering interdisciplinarity and participation in science.

Show MeSH
Related in: MedlinePlus