Limits...
Cannabidiol, a non-psychoactive cannabinoid, leads to EGR2-dependent anergy in activated encephalitogenic T cells.

Kozela E, Juknat A, Kaushansky N, Ben-Nun A, Coppola G, Vogel Z - J Neuroinflammation (2015)

Bottom Line: In parallel, we observed decreased levels of major histocompatibility complex class II (MHCII), CD25, and CD69 on CD19(+) B cells following CBD treatment, showing diminished antigen presenting capabilities of B cells and reduction in their pro-inflammatory functions.Our data suggests that CBD exerts its immunoregulatory effects via induction of CD4(+)CD25(-)CD69(+)LAG3(+) cells in MOG35-55-activated APC/TMOG co-cultures.This is accompanied by EGR2-dependent anergy of stimulated TMOG cells as well as a switch in their intracellular STAT3/STAT5 activation balance leading to the previously observed decrease in Th17 activity.

View Article: PubMed Central - PubMed

Affiliation: The Dr Miriam and Sheldon G. Adelson Center for the Biology of Addictive Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. ewa.kozela@weizmann.ac.il.

ABSTRACT

Background: Cannabidiol (CBD), the main non-psychoactive cannabinoid, has been previously shown by us to ameliorate clinical symptoms and to decrease inflammation in myelin oligodendrocyte glycoprotein (MOG)35-55-induced mouse experimental autoimmune encephalomyelitis model of multiple sclerosis as well as to decrease MOG35-55-induced T cell proliferation and IL-17 secretion. However, the mechanisms of CBD anti-inflammatory activities are unclear.

Methods: Here we analyzed the effects of CBD on splenocytes (source of accessory T cells and antigen presenting cells (APC)) co-cultured with MOG35-55-specific T cells (TMOG) and stimulated with MOG35-55. Using flow cytometry, we evaluated the expression of surface activation markers and inhibitory molecules on T cells and B cells. TMOG cells were purified using CD4 positive microbead selection and submitted for quantitative PCR and microarray of mRNA transcript analyzes. Cell signaling studies in purified TMOG were carried out using immunoblotting.

Results: We found that CBD leads to upregulation of CD69 and lymphocyte-activation gene 3 (LAG3) regulatory molecules on CD4(+)CD25(-) accessory T cells. This subtype of CD4(+)CD25(-)CD69(+)LAG3(+) T cells has been recognized as induced regulatory phenotype promoting anergy in activated T cells. Indeed, we observed that CBD treatment results in upregulation of EGR2 (a key T cell anergy inducer) mRNA transcription in stimulated TMOG cells. This was accompanied by elevated levels of anergy promoting genes such as IL-10 (anti-inflammatory cytokine), STAT5 (regulatory factor), and LAG3 mRNAs, as well as of several enhancers of cell cycle arrest (such as Nfatc1, Casp4, Cdkn1a, and Icos). Moreover, CBD exposure leads to a decrease in STAT3 and to an increase in STAT5 phosphorylation in TMOG cells, positive and negative regulators of Th17 activity, respectively. In parallel, we observed decreased levels of major histocompatibility complex class II (MHCII), CD25, and CD69 on CD19(+) B cells following CBD treatment, showing diminished antigen presenting capabilities of B cells and reduction in their pro-inflammatory functions.

Conclusions: Our data suggests that CBD exerts its immunoregulatory effects via induction of CD4(+)CD25(-)CD69(+)LAG3(+) cells in MOG35-55-activated APC/TMOG co-cultures. This is accompanied by EGR2-dependent anergy of stimulated TMOG cells as well as a switch in their intracellular STAT3/STAT5 activation balance leading to the previously observed decrease in Th17 activity.

No MeSH data available.


Related in: MedlinePlus

The effect of CBD treatment on EGR2, STAT5, LAG3, and IL-10 mRNA levels in purified TMOGpreviously co-cultured with APC. TMOG cells were co-cultured with adherent APC and stimulated with MOG35-55 in the presence or absence of CBD. TMOG cells were then purified using CD4+ microbeads, lysed, and subjected for mRNA extraction and qPCR analysis using gene specific primers. The bar graphs show the levels of the indicated mRNAs as percentage of the amounts observed following stimulation with MOG35-55. (A) EGR2 mRNA (ANOVA F(3,4) = 211.5, P < 0.001); (B) STAT5 mRNA (ANOVA F(3,12) = 6.1, P < 0.01); (C) LAG3 mRNA (ANOVA F(3,8) = 116.5, P < 0.001); (D) IL-10 mRNA (ANOVA F(3,11) = 9.9, P < 0.01); (n = 2 to 4). Symbols: *P < 0.05, **P < 0.01, ***P < 0.001 vs non-stimulated cells; #P < 0.05, ##P < 0.001, ###P < 0.001 vs MOG35-55-stimulated cells.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4363052&req=5

Fig3: The effect of CBD treatment on EGR2, STAT5, LAG3, and IL-10 mRNA levels in purified TMOGpreviously co-cultured with APC. TMOG cells were co-cultured with adherent APC and stimulated with MOG35-55 in the presence or absence of CBD. TMOG cells were then purified using CD4+ microbeads, lysed, and subjected for mRNA extraction and qPCR analysis using gene specific primers. The bar graphs show the levels of the indicated mRNAs as percentage of the amounts observed following stimulation with MOG35-55. (A) EGR2 mRNA (ANOVA F(3,4) = 211.5, P < 0.001); (B) STAT5 mRNA (ANOVA F(3,12) = 6.1, P < 0.01); (C) LAG3 mRNA (ANOVA F(3,8) = 116.5, P < 0.001); (D) IL-10 mRNA (ANOVA F(3,11) = 9.9, P < 0.01); (n = 2 to 4). Symbols: *P < 0.05, **P < 0.01, ***P < 0.001 vs non-stimulated cells; #P < 0.05, ##P < 0.001, ###P < 0.001 vs MOG35-55-stimulated cells.

Mentions: TMOG cells were activated with MOG35-55 for 8 h in the presence of adherent APC. The floating TMOG cells were then collected and purified using CD4 microbeads and their mRNA subjected for qPCR analysis of EGR2 mRNA. We found that MOG35-55 stimulation dramatically upregulated the expression of EGR2 mRNA in the purified TMOG cells as compared to control cells (P < 0.01; Figure 3A). This effect was potentiated by CBD treatment by another 25% (P < 0.05). CBD itself slightly but insignificantly increased the expression of EGR2 mRNA in non-stimulated TMOG cells.Figure 3


Cannabidiol, a non-psychoactive cannabinoid, leads to EGR2-dependent anergy in activated encephalitogenic T cells.

Kozela E, Juknat A, Kaushansky N, Ben-Nun A, Coppola G, Vogel Z - J Neuroinflammation (2015)

The effect of CBD treatment on EGR2, STAT5, LAG3, and IL-10 mRNA levels in purified TMOGpreviously co-cultured with APC. TMOG cells were co-cultured with adherent APC and stimulated with MOG35-55 in the presence or absence of CBD. TMOG cells were then purified using CD4+ microbeads, lysed, and subjected for mRNA extraction and qPCR analysis using gene specific primers. The bar graphs show the levels of the indicated mRNAs as percentage of the amounts observed following stimulation with MOG35-55. (A) EGR2 mRNA (ANOVA F(3,4) = 211.5, P < 0.001); (B) STAT5 mRNA (ANOVA F(3,12) = 6.1, P < 0.01); (C) LAG3 mRNA (ANOVA F(3,8) = 116.5, P < 0.001); (D) IL-10 mRNA (ANOVA F(3,11) = 9.9, P < 0.01); (n = 2 to 4). Symbols: *P < 0.05, **P < 0.01, ***P < 0.001 vs non-stimulated cells; #P < 0.05, ##P < 0.001, ###P < 0.001 vs MOG35-55-stimulated cells.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4363052&req=5

Fig3: The effect of CBD treatment on EGR2, STAT5, LAG3, and IL-10 mRNA levels in purified TMOGpreviously co-cultured with APC. TMOG cells were co-cultured with adherent APC and stimulated with MOG35-55 in the presence or absence of CBD. TMOG cells were then purified using CD4+ microbeads, lysed, and subjected for mRNA extraction and qPCR analysis using gene specific primers. The bar graphs show the levels of the indicated mRNAs as percentage of the amounts observed following stimulation with MOG35-55. (A) EGR2 mRNA (ANOVA F(3,4) = 211.5, P < 0.001); (B) STAT5 mRNA (ANOVA F(3,12) = 6.1, P < 0.01); (C) LAG3 mRNA (ANOVA F(3,8) = 116.5, P < 0.001); (D) IL-10 mRNA (ANOVA F(3,11) = 9.9, P < 0.01); (n = 2 to 4). Symbols: *P < 0.05, **P < 0.01, ***P < 0.001 vs non-stimulated cells; #P < 0.05, ##P < 0.001, ###P < 0.001 vs MOG35-55-stimulated cells.
Mentions: TMOG cells were activated with MOG35-55 for 8 h in the presence of adherent APC. The floating TMOG cells were then collected and purified using CD4 microbeads and their mRNA subjected for qPCR analysis of EGR2 mRNA. We found that MOG35-55 stimulation dramatically upregulated the expression of EGR2 mRNA in the purified TMOG cells as compared to control cells (P < 0.01; Figure 3A). This effect was potentiated by CBD treatment by another 25% (P < 0.05). CBD itself slightly but insignificantly increased the expression of EGR2 mRNA in non-stimulated TMOG cells.Figure 3

Bottom Line: In parallel, we observed decreased levels of major histocompatibility complex class II (MHCII), CD25, and CD69 on CD19(+) B cells following CBD treatment, showing diminished antigen presenting capabilities of B cells and reduction in their pro-inflammatory functions.Our data suggests that CBD exerts its immunoregulatory effects via induction of CD4(+)CD25(-)CD69(+)LAG3(+) cells in MOG35-55-activated APC/TMOG co-cultures.This is accompanied by EGR2-dependent anergy of stimulated TMOG cells as well as a switch in their intracellular STAT3/STAT5 activation balance leading to the previously observed decrease in Th17 activity.

View Article: PubMed Central - PubMed

Affiliation: The Dr Miriam and Sheldon G. Adelson Center for the Biology of Addictive Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. ewa.kozela@weizmann.ac.il.

ABSTRACT

Background: Cannabidiol (CBD), the main non-psychoactive cannabinoid, has been previously shown by us to ameliorate clinical symptoms and to decrease inflammation in myelin oligodendrocyte glycoprotein (MOG)35-55-induced mouse experimental autoimmune encephalomyelitis model of multiple sclerosis as well as to decrease MOG35-55-induced T cell proliferation and IL-17 secretion. However, the mechanisms of CBD anti-inflammatory activities are unclear.

Methods: Here we analyzed the effects of CBD on splenocytes (source of accessory T cells and antigen presenting cells (APC)) co-cultured with MOG35-55-specific T cells (TMOG) and stimulated with MOG35-55. Using flow cytometry, we evaluated the expression of surface activation markers and inhibitory molecules on T cells and B cells. TMOG cells were purified using CD4 positive microbead selection and submitted for quantitative PCR and microarray of mRNA transcript analyzes. Cell signaling studies in purified TMOG were carried out using immunoblotting.

Results: We found that CBD leads to upregulation of CD69 and lymphocyte-activation gene 3 (LAG3) regulatory molecules on CD4(+)CD25(-) accessory T cells. This subtype of CD4(+)CD25(-)CD69(+)LAG3(+) T cells has been recognized as induced regulatory phenotype promoting anergy in activated T cells. Indeed, we observed that CBD treatment results in upregulation of EGR2 (a key T cell anergy inducer) mRNA transcription in stimulated TMOG cells. This was accompanied by elevated levels of anergy promoting genes such as IL-10 (anti-inflammatory cytokine), STAT5 (regulatory factor), and LAG3 mRNAs, as well as of several enhancers of cell cycle arrest (such as Nfatc1, Casp4, Cdkn1a, and Icos). Moreover, CBD exposure leads to a decrease in STAT3 and to an increase in STAT5 phosphorylation in TMOG cells, positive and negative regulators of Th17 activity, respectively. In parallel, we observed decreased levels of major histocompatibility complex class II (MHCII), CD25, and CD69 on CD19(+) B cells following CBD treatment, showing diminished antigen presenting capabilities of B cells and reduction in their pro-inflammatory functions.

Conclusions: Our data suggests that CBD exerts its immunoregulatory effects via induction of CD4(+)CD25(-)CD69(+)LAG3(+) cells in MOG35-55-activated APC/TMOG co-cultures. This is accompanied by EGR2-dependent anergy of stimulated TMOG cells as well as a switch in their intracellular STAT3/STAT5 activation balance leading to the previously observed decrease in Th17 activity.

No MeSH data available.


Related in: MedlinePlus