Limits...
Virtual reality simulation for the optimization of endovascular procedures: current perspectives.

Rudarakanchana N, Van Herzeele I, Desender L, Cheshire NJ - Vasc Health Risk Manag (2015)

Bottom Line: These multidisciplinary interactions lead to challenges that are reflected in the high rate of errors occurring during endovascular procedures.As our understanding of the skills, both technical and nontechnical, required for optimal endovascular performance improves, the requisite tools for objective assessment of these skills are being developed and will further enable the use of VR simulation in the training and assessment of endovascular interventionalists and their entire teams.Simulation training that allows deliberate practice without danger to patients may be key to bridging the gap between new endovascular technology and improved patient outcomes.

View Article: PubMed Central - PubMed

Affiliation: Department of Surgery, Imperial College London, London, UK.

ABSTRACT
Endovascular technologies are rapidly evolving, often requiring coordination and cooperation between clinicians and technicians from diverse specialties. These multidisciplinary interactions lead to challenges that are reflected in the high rate of errors occurring during endovascular procedures. Endovascular virtual reality (VR) simulation has evolved from simple benchtop devices to full physic simulators with advanced haptics and dynamic imaging and physiological controls. The latest developments in this field include the use of fully immersive simulated hybrid angiosuites to train whole endovascular teams in crisis resource management and novel technologies that enable practitioners to build VR simulations based on patient-specific anatomy. As our understanding of the skills, both technical and nontechnical, required for optimal endovascular performance improves, the requisite tools for objective assessment of these skills are being developed and will further enable the use of VR simulation in the training and assessment of endovascular interventionalists and their entire teams. Simulation training that allows deliberate practice without danger to patients may be key to bridging the gap between new endovascular technology and improved patient outcomes.

Show MeSH
Modified global rating scale of generic endovascular skills.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4362978&req=5

f1-vhrm-11-195: Modified global rating scale of generic endovascular skills.

Mentions: The lack of agreed definitions of technical endovascular skills and sufficient tools for objective measurement of such skills remains a significant obstacle in the validation and wider adoption of endovascular VR simulators. Surrogate measures of technical skill, such as time to complete tasks, contrast use, fluoroscopy exposure time, and number of errors (eg, advancement of catheters without guidewires, number of contacts of stiff wire with vessel wall), may not adequately reflect the quality of endovascular skill, and certainly, there is little evidence that improved performance in these metrics correlates with procedural experience or results in superior procedural outcomes. In an early study by our group using the VIST simulator, interventionalists experienced in CAS were arbitrarily divided into four groups based on their clinical CAS experience.15 The more experienced specialists performed the simulated intervention faster and used less radiation. However, the levels of CAS experience could not be differentiated using the automated error recordings (clinical tools used, residual stenosis) from the VR simulator. A generic rating scale of basic endovascular skill was therefore developed, focusing mainly on hand movements and using a Likert scale of 1 (very poor performance) to 5 (excellent performance) (Figure 1). Videotaping of the fluoroscopy screen and clinicians’ hands allowed post hoc video-based assessment by independent experienced interventionalists; performance on this rating scale was able to differentiate between clinicians of varying CAS experience. Procedure-specific rating scales for various endovascular procedures have also been developed, enabling evaluation of procedure-specific technical endovascular skills using post hoc video-based analysis of fluoroscopy screen images.


Virtual reality simulation for the optimization of endovascular procedures: current perspectives.

Rudarakanchana N, Van Herzeele I, Desender L, Cheshire NJ - Vasc Health Risk Manag (2015)

Modified global rating scale of generic endovascular skills.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4362978&req=5

f1-vhrm-11-195: Modified global rating scale of generic endovascular skills.
Mentions: The lack of agreed definitions of technical endovascular skills and sufficient tools for objective measurement of such skills remains a significant obstacle in the validation and wider adoption of endovascular VR simulators. Surrogate measures of technical skill, such as time to complete tasks, contrast use, fluoroscopy exposure time, and number of errors (eg, advancement of catheters without guidewires, number of contacts of stiff wire with vessel wall), may not adequately reflect the quality of endovascular skill, and certainly, there is little evidence that improved performance in these metrics correlates with procedural experience or results in superior procedural outcomes. In an early study by our group using the VIST simulator, interventionalists experienced in CAS were arbitrarily divided into four groups based on their clinical CAS experience.15 The more experienced specialists performed the simulated intervention faster and used less radiation. However, the levels of CAS experience could not be differentiated using the automated error recordings (clinical tools used, residual stenosis) from the VR simulator. A generic rating scale of basic endovascular skill was therefore developed, focusing mainly on hand movements and using a Likert scale of 1 (very poor performance) to 5 (excellent performance) (Figure 1). Videotaping of the fluoroscopy screen and clinicians’ hands allowed post hoc video-based assessment by independent experienced interventionalists; performance on this rating scale was able to differentiate between clinicians of varying CAS experience. Procedure-specific rating scales for various endovascular procedures have also been developed, enabling evaluation of procedure-specific technical endovascular skills using post hoc video-based analysis of fluoroscopy screen images.

Bottom Line: These multidisciplinary interactions lead to challenges that are reflected in the high rate of errors occurring during endovascular procedures.As our understanding of the skills, both technical and nontechnical, required for optimal endovascular performance improves, the requisite tools for objective assessment of these skills are being developed and will further enable the use of VR simulation in the training and assessment of endovascular interventionalists and their entire teams.Simulation training that allows deliberate practice without danger to patients may be key to bridging the gap between new endovascular technology and improved patient outcomes.

View Article: PubMed Central - PubMed

Affiliation: Department of Surgery, Imperial College London, London, UK.

ABSTRACT
Endovascular technologies are rapidly evolving, often requiring coordination and cooperation between clinicians and technicians from diverse specialties. These multidisciplinary interactions lead to challenges that are reflected in the high rate of errors occurring during endovascular procedures. Endovascular virtual reality (VR) simulation has evolved from simple benchtop devices to full physic simulators with advanced haptics and dynamic imaging and physiological controls. The latest developments in this field include the use of fully immersive simulated hybrid angiosuites to train whole endovascular teams in crisis resource management and novel technologies that enable practitioners to build VR simulations based on patient-specific anatomy. As our understanding of the skills, both technical and nontechnical, required for optimal endovascular performance improves, the requisite tools for objective assessment of these skills are being developed and will further enable the use of VR simulation in the training and assessment of endovascular interventionalists and their entire teams. Simulation training that allows deliberate practice without danger to patients may be key to bridging the gap between new endovascular technology and improved patient outcomes.

Show MeSH