Limits...
Plant terpenes: defense responses, phylogenetic analysis, regulation and clinical applications

View Article: PubMed Central

ABSTRACT

The terpenoids constitute the largest class of natural products and many interesting products are extensively applied in the industrial sector as flavors, fragrances, spices and are also used in perfumery and cosmetics. Many terpenoids have biological activities and also used for medical purposes. In higher plants, the conventional acetate-mevalonic acid pathway operates mainly in the cytosol and mitochondria and synthesizes sterols, sesquiterpenes and ubiquinones mainly. In the plastid, the non-mevalonic acid pathway takes place and synthesizes hemi-, mono-, sesqui-, and diterpenes along with carotenoids and phytol tail of chlorophyll. In this review paper, recent developments in the biosynthesis of terpenoids, indepth description of terpene synthases and their phylogenetic analysis, regulation of terpene biosynthesis as well as updates of terpenes which have entered in the clinical studies are reviewed thoroughly.

No MeSH data available.


Schematic overview of triterpenoid biosynthesis. Farnesyl diphosphate synthase (FPS) isomerizes isopentenyl diphosphate and dimethylallyl diphosphate (DMAPP) to farnesyl diphosphate, while squalene synthase converts to squalene. Squalene epoxide oxidizes the squalene to 2,3-oxidosqualene. Oxidosqualene cyclase (OSC) catalyzes 2,3-oxidosqualene through cationic intermediates to one or more cyclic triterpene skeletons. The other enzymes involved in the biosynthesis include α/β amyrin synthase (α/β AS) which can also form the lupenyl cation but further ring expansion and rearrangements are required before the deprotonation to α/β amyrin, the precursors of sapogenins. α-Amyrin oxidase involved in biosynthesis of ursolic acid and oleanolic acid
© Copyright Policy - OpenAccess
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4362742&req=5

Fig2: Schematic overview of triterpenoid biosynthesis. Farnesyl diphosphate synthase (FPS) isomerizes isopentenyl diphosphate and dimethylallyl diphosphate (DMAPP) to farnesyl diphosphate, while squalene synthase converts to squalene. Squalene epoxide oxidizes the squalene to 2,3-oxidosqualene. Oxidosqualene cyclase (OSC) catalyzes 2,3-oxidosqualene through cationic intermediates to one or more cyclic triterpene skeletons. The other enzymes involved in the biosynthesis include α/β amyrin synthase (α/β AS) which can also form the lupenyl cation but further ring expansion and rearrangements are required before the deprotonation to α/β amyrin, the precursors of sapogenins. α-Amyrin oxidase involved in biosynthesis of ursolic acid and oleanolic acid

Mentions: The class of triterpenes includes sterols and triterpenoids, which can be synthesized as saponins and sapogenins sufficient amount in plants (Sparge et al. 2004). The linear triterpene squalene is derived from the reductive coupling of the two molecules of farnesyl pyrophosphate (FPP) by squalene synthase. Squalene is later on oxidized biosynthetically by the other enzyme squalene epoxidase to generate 2,3-oxidosqualene. 2,3-oxidosqualene converted to triterpene alcohols or aldehydes by oxidosqualene cyclases (Phillips et al. 2006; Jenner et al. 2005; Haralampidis et al. 2002). In plants, triterpenoid biosynthetic diversity has been developed and their diverse genomes encode multiple oxidosqualene cyclase enzymes to form these triterpene skeletons (Fig. 2). The level at which the structural diversity of triterpenes is generated, depends on the cyclization of 2,3-oxidosqualene by different oxidosqualene cyclases such as lupeol synthase (LS) and α/β-amyrin synthase (Mangus et al. 2006; Sawai and Saito 2011). All triterpene synthases appear to have diverged from cycloartenol synthase gene (Zhang et al. 2003), but an independent origin for β-AS in dicots and monocots has also been reported (Phillips et al. 2003; Moses et al. 2013).Fig. 2


Plant terpenes: defense responses, phylogenetic analysis, regulation and clinical applications
Schematic overview of triterpenoid biosynthesis. Farnesyl diphosphate synthase (FPS) isomerizes isopentenyl diphosphate and dimethylallyl diphosphate (DMAPP) to farnesyl diphosphate, while squalene synthase converts to squalene. Squalene epoxide oxidizes the squalene to 2,3-oxidosqualene. Oxidosqualene cyclase (OSC) catalyzes 2,3-oxidosqualene through cationic intermediates to one or more cyclic triterpene skeletons. The other enzymes involved in the biosynthesis include α/β amyrin synthase (α/β AS) which can also form the lupenyl cation but further ring expansion and rearrangements are required before the deprotonation to α/β amyrin, the precursors of sapogenins. α-Amyrin oxidase involved in biosynthesis of ursolic acid and oleanolic acid
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4362742&req=5

Fig2: Schematic overview of triterpenoid biosynthesis. Farnesyl diphosphate synthase (FPS) isomerizes isopentenyl diphosphate and dimethylallyl diphosphate (DMAPP) to farnesyl diphosphate, while squalene synthase converts to squalene. Squalene epoxide oxidizes the squalene to 2,3-oxidosqualene. Oxidosqualene cyclase (OSC) catalyzes 2,3-oxidosqualene through cationic intermediates to one or more cyclic triterpene skeletons. The other enzymes involved in the biosynthesis include α/β amyrin synthase (α/β AS) which can also form the lupenyl cation but further ring expansion and rearrangements are required before the deprotonation to α/β amyrin, the precursors of sapogenins. α-Amyrin oxidase involved in biosynthesis of ursolic acid and oleanolic acid
Mentions: The class of triterpenes includes sterols and triterpenoids, which can be synthesized as saponins and sapogenins sufficient amount in plants (Sparge et al. 2004). The linear triterpene squalene is derived from the reductive coupling of the two molecules of farnesyl pyrophosphate (FPP) by squalene synthase. Squalene is later on oxidized biosynthetically by the other enzyme squalene epoxidase to generate 2,3-oxidosqualene. 2,3-oxidosqualene converted to triterpene alcohols or aldehydes by oxidosqualene cyclases (Phillips et al. 2006; Jenner et al. 2005; Haralampidis et al. 2002). In plants, triterpenoid biosynthetic diversity has been developed and their diverse genomes encode multiple oxidosqualene cyclase enzymes to form these triterpene skeletons (Fig. 2). The level at which the structural diversity of triterpenes is generated, depends on the cyclization of 2,3-oxidosqualene by different oxidosqualene cyclases such as lupeol synthase (LS) and α/β-amyrin synthase (Mangus et al. 2006; Sawai and Saito 2011). All triterpene synthases appear to have diverged from cycloartenol synthase gene (Zhang et al. 2003), but an independent origin for β-AS in dicots and monocots has also been reported (Phillips et al. 2003; Moses et al. 2013).Fig. 2

View Article: PubMed Central

ABSTRACT

The terpenoids constitute the largest class of natural products and many interesting products are extensively applied in the industrial sector as flavors, fragrances, spices and are also used in perfumery and cosmetics. Many terpenoids have biological activities and also used for medical purposes. In higher plants, the conventional acetate-mevalonic acid pathway operates mainly in the cytosol and mitochondria and synthesizes sterols, sesquiterpenes and ubiquinones mainly. In the plastid, the non-mevalonic acid pathway takes place and synthesizes hemi-, mono-, sesqui-, and diterpenes along with carotenoids and phytol tail of chlorophyll. In this review paper, recent developments in the biosynthesis of terpenoids, indepth description of terpene synthases and their phylogenetic analysis, regulation of terpene biosynthesis as well as updates of terpenes which have entered in the clinical studies are reviewed thoroughly.

No MeSH data available.