Limits...
Plant terpenes: defense responses, phylogenetic analysis, regulation and clinical applications

View Article: PubMed Central - PubMed

ABSTRACT

The terpenoids constitute the largest class of natural products and many interesting products are extensively applied in the industrial sector as flavors, fragrances, spices and are also used in perfumery and cosmetics. Many terpenoids have biological activities and also used for medical purposes. In higher plants, the conventional acetate-mevalonic acid pathway operates mainly in the cytosol and mitochondria and synthesizes sterols, sesquiterpenes and ubiquinones mainly. In the plastid, the non-mevalonic acid pathway takes place and synthesizes hemi-, mono-, sesqui-, and diterpenes along with carotenoids and phytol tail of chlorophyll. In this review paper, recent developments in the biosynthesis of terpenoids, indepth description of terpene synthases and their phylogenetic analysis, regulation of terpene biosynthesis as well as updates of terpenes which have entered in the clinical studies are reviewed thoroughly.

No MeSH data available.


Schematic overview of monoterpenoid, sesquiterpenoid, diterpenoid and triterpenoid biosynthetic pathways. AACT acetoacetyl-CoA thiolase, AcAc-CoA acetoacetyl-CoA, HMGS HMG-CoA synthase, HMG-CoA 3-hydroxy-3-methylglutaryl, HMGR HMG-CoA-reductase, IPP isopentenyl diphosphate, DMAPP dimethylallyl diphosphate, FPP farnesyl pyrophosphate, ADS amorpha-4,11-diene synthase, CYT450 cytochrome P450 hydroxylase, GlyAld-3P glyceraldehyde-3-phosphate, DXP deoxyxylulose-5-phosphate, DXS DXP synthase, MEP methylerythritol-4-phosphate, DXR DXP reductoisomerase, CDP-OME 4-(cytidine-5′-diphospho)-2-C-methyl-d-erythritol, MCT 2-C-methyl-d-erythritol-4-phosphate-cytidylyl transferase, CDP-ME2P 4-(cytidine-5′-diphospho)-2-C-methyl-d-erythritol phosphate, CMK CDP-ME Kinase, ME2, 4cPP 2-C-methyl-d-erythritol, 2,4-cyclodiphosphate, MDS 2-C-methyl-d-erythritol-2,4-cyclodiphosphate synthase, HMBPP (E)-4-hydroxy-3-methylbut-2-enyl diphosphate, HDS (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase, GPP geranyl diphosphate, LS limonene synthase, NPP neryl diphosphate, SOLPN α-phellandrene synthase, FDS farnesyl diphosphate synthase. Similarly chemical structures of (−)-methanol, α-phellandrene; taxol, artemisinin and cucurbitacin C are shown as representative examples of terpenoids
© Copyright Policy - OpenAccess
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4362742&req=5

Fig1: Schematic overview of monoterpenoid, sesquiterpenoid, diterpenoid and triterpenoid biosynthetic pathways. AACT acetoacetyl-CoA thiolase, AcAc-CoA acetoacetyl-CoA, HMGS HMG-CoA synthase, HMG-CoA 3-hydroxy-3-methylglutaryl, HMGR HMG-CoA-reductase, IPP isopentenyl diphosphate, DMAPP dimethylallyl diphosphate, FPP farnesyl pyrophosphate, ADS amorpha-4,11-diene synthase, CYT450 cytochrome P450 hydroxylase, GlyAld-3P glyceraldehyde-3-phosphate, DXP deoxyxylulose-5-phosphate, DXS DXP synthase, MEP methylerythritol-4-phosphate, DXR DXP reductoisomerase, CDP-OME 4-(cytidine-5′-diphospho)-2-C-methyl-d-erythritol, MCT 2-C-methyl-d-erythritol-4-phosphate-cytidylyl transferase, CDP-ME2P 4-(cytidine-5′-diphospho)-2-C-methyl-d-erythritol phosphate, CMK CDP-ME Kinase, ME2, 4cPP 2-C-methyl-d-erythritol, 2,4-cyclodiphosphate, MDS 2-C-methyl-d-erythritol-2,4-cyclodiphosphate synthase, HMBPP (E)-4-hydroxy-3-methylbut-2-enyl diphosphate, HDS (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase, GPP geranyl diphosphate, LS limonene synthase, NPP neryl diphosphate, SOLPN α-phellandrene synthase, FDS farnesyl diphosphate synthase. Similarly chemical structures of (−)-methanol, α-phellandrene; taxol, artemisinin and cucurbitacin C are shown as representative examples of terpenoids

Mentions: Terpenoids are important for plant survival and also possess biological and pharmacological properties that are beneficial to humans. In plants, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) can be synthesized via two compartmentalized pathways. The mevalonic acid pathway of terpenoid biosynthesis operates in cytosol, the endoplasmic reticulum and peroxisomes (Carrie et al. 2007; Hemmerlin et al. 2003; Dudareva et al. 2006; Leivar et al. 2005; Merret et al. 2007; Sapir-Mir et al. 2008; Simkin et al. 2011; Lange and Ahkami 2013) (Fig. 1). The condensation of acetyl CoA three units leads to the synthesis of 3-hydroxy-3-methylglutaryl CoA, which later on produces mevalonic acid. The mevalonic acid converted to isopentenyl diphosphate through the process of the phosphorylation and decarboxylation. 3-hydroxy-3-methylglutaryl CoA reductase catalyzes the reduction of 3-hydroxy-3-methylglutaryl CoA to mevalonic acid (Luskey and Stevens 1985; Basson et al. 1988; Igual et al. 1992; Rodwell et al. 2000). In Arabidopsis thaliana, mevalonate-5-diphosphate is produced from mevalonic acid by the phosphorylation and the whole reaction is catalyzed by mevalonate kinase and phosphomevalonate kinase (Tsay and Robinson 1991; Lluch et al. 2000). Later on, the mevalonate-5-diphosphate decarboxylase catalyzes the conversion of mevalonate-5-diphosphate to isopentenyl diphosphate, which is the end product of mevalonic acid pathway of terpenoid biosynthesis (Dhe-Paganon et al. 1994) (Fig. 1).Fig. 1


Plant terpenes: defense responses, phylogenetic analysis, regulation and clinical applications
Schematic overview of monoterpenoid, sesquiterpenoid, diterpenoid and triterpenoid biosynthetic pathways. AACT acetoacetyl-CoA thiolase, AcAc-CoA acetoacetyl-CoA, HMGS HMG-CoA synthase, HMG-CoA 3-hydroxy-3-methylglutaryl, HMGR HMG-CoA-reductase, IPP isopentenyl diphosphate, DMAPP dimethylallyl diphosphate, FPP farnesyl pyrophosphate, ADS amorpha-4,11-diene synthase, CYT450 cytochrome P450 hydroxylase, GlyAld-3P glyceraldehyde-3-phosphate, DXP deoxyxylulose-5-phosphate, DXS DXP synthase, MEP methylerythritol-4-phosphate, DXR DXP reductoisomerase, CDP-OME 4-(cytidine-5′-diphospho)-2-C-methyl-d-erythritol, MCT 2-C-methyl-d-erythritol-4-phosphate-cytidylyl transferase, CDP-ME2P 4-(cytidine-5′-diphospho)-2-C-methyl-d-erythritol phosphate, CMK CDP-ME Kinase, ME2, 4cPP 2-C-methyl-d-erythritol, 2,4-cyclodiphosphate, MDS 2-C-methyl-d-erythritol-2,4-cyclodiphosphate synthase, HMBPP (E)-4-hydroxy-3-methylbut-2-enyl diphosphate, HDS (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase, GPP geranyl diphosphate, LS limonene synthase, NPP neryl diphosphate, SOLPN α-phellandrene synthase, FDS farnesyl diphosphate synthase. Similarly chemical structures of (−)-methanol, α-phellandrene; taxol, artemisinin and cucurbitacin C are shown as representative examples of terpenoids
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4362742&req=5

Fig1: Schematic overview of monoterpenoid, sesquiterpenoid, diterpenoid and triterpenoid biosynthetic pathways. AACT acetoacetyl-CoA thiolase, AcAc-CoA acetoacetyl-CoA, HMGS HMG-CoA synthase, HMG-CoA 3-hydroxy-3-methylglutaryl, HMGR HMG-CoA-reductase, IPP isopentenyl diphosphate, DMAPP dimethylallyl diphosphate, FPP farnesyl pyrophosphate, ADS amorpha-4,11-diene synthase, CYT450 cytochrome P450 hydroxylase, GlyAld-3P glyceraldehyde-3-phosphate, DXP deoxyxylulose-5-phosphate, DXS DXP synthase, MEP methylerythritol-4-phosphate, DXR DXP reductoisomerase, CDP-OME 4-(cytidine-5′-diphospho)-2-C-methyl-d-erythritol, MCT 2-C-methyl-d-erythritol-4-phosphate-cytidylyl transferase, CDP-ME2P 4-(cytidine-5′-diphospho)-2-C-methyl-d-erythritol phosphate, CMK CDP-ME Kinase, ME2, 4cPP 2-C-methyl-d-erythritol, 2,4-cyclodiphosphate, MDS 2-C-methyl-d-erythritol-2,4-cyclodiphosphate synthase, HMBPP (E)-4-hydroxy-3-methylbut-2-enyl diphosphate, HDS (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase, GPP geranyl diphosphate, LS limonene synthase, NPP neryl diphosphate, SOLPN α-phellandrene synthase, FDS farnesyl diphosphate synthase. Similarly chemical structures of (−)-methanol, α-phellandrene; taxol, artemisinin and cucurbitacin C are shown as representative examples of terpenoids
Mentions: Terpenoids are important for plant survival and also possess biological and pharmacological properties that are beneficial to humans. In plants, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) can be synthesized via two compartmentalized pathways. The mevalonic acid pathway of terpenoid biosynthesis operates in cytosol, the endoplasmic reticulum and peroxisomes (Carrie et al. 2007; Hemmerlin et al. 2003; Dudareva et al. 2006; Leivar et al. 2005; Merret et al. 2007; Sapir-Mir et al. 2008; Simkin et al. 2011; Lange and Ahkami 2013) (Fig. 1). The condensation of acetyl CoA three units leads to the synthesis of 3-hydroxy-3-methylglutaryl CoA, which later on produces mevalonic acid. The mevalonic acid converted to isopentenyl diphosphate through the process of the phosphorylation and decarboxylation. 3-hydroxy-3-methylglutaryl CoA reductase catalyzes the reduction of 3-hydroxy-3-methylglutaryl CoA to mevalonic acid (Luskey and Stevens 1985; Basson et al. 1988; Igual et al. 1992; Rodwell et al. 2000). In Arabidopsis thaliana, mevalonate-5-diphosphate is produced from mevalonic acid by the phosphorylation and the whole reaction is catalyzed by mevalonate kinase and phosphomevalonate kinase (Tsay and Robinson 1991; Lluch et al. 2000). Later on, the mevalonate-5-diphosphate decarboxylase catalyzes the conversion of mevalonate-5-diphosphate to isopentenyl diphosphate, which is the end product of mevalonic acid pathway of terpenoid biosynthesis (Dhe-Paganon et al. 1994) (Fig. 1).Fig. 1

View Article: PubMed Central - PubMed

ABSTRACT

The terpenoids constitute the largest class of natural products and many interesting products are extensively applied in the industrial sector as flavors, fragrances, spices and are also used in perfumery and cosmetics. Many terpenoids have biological activities and also used for medical purposes. In higher plants, the conventional acetate-mevalonic acid pathway operates mainly in the cytosol and mitochondria and synthesizes sterols, sesquiterpenes and ubiquinones mainly. In the plastid, the non-mevalonic acid pathway takes place and synthesizes hemi-, mono-, sesqui-, and diterpenes along with carotenoids and phytol tail of chlorophyll. In this review paper, recent developments in the biosynthesis of terpenoids, indepth description of terpene synthases and their phylogenetic analysis, regulation of terpene biosynthesis as well as updates of terpenes which have entered in the clinical studies are reviewed thoroughly.

No MeSH data available.