Limits...
Development of a bacterial bioassay for atrazine and cyanuric acid detection.

Hua A, Gueuné H, Cregut M, Thouand G, Durand MJ - Front Microbiol (2015)

Bottom Line: Moreover, atrazine detection by E. coli SM004 ranges from 1.08 to 15 μM.According to WHO recommendations, the cyanuric acid detection range is sensitive enough to discriminate between polluted and drinking water.Nevertheless, the detection of atrazine by E. coli SM004 is only applicable for high concentrations of contaminants.

View Article: PubMed Central - PubMed

Affiliation: Nantes University, Campus de la Courtaisière - IUT, UMR CNRS 6144 GEPEA, CBAC La Roche-sur-Yon, France.

ABSTRACT
The s-triazine herbicides are compounds which can disseminate into soils and water. Due to their toxic effects on living organisms, their concentrations in drinking water are legislated by WHO recommendations. Here we have developed for the first time, to the best of our knowledge, an alternative method for physicochemical quantification using two bioluminescent bacterial biosensors: E. coli SM003 for cyanuric acid detection and E. coli SM004 for both atrazine and cyanuric acid detection. The concentration of cyanuric acid detection for E. coli SM003 ranges from 7.83 μM to 2.89 mM, and for E. coli SM004 ranges from 0.22 to 15 μM. Moreover, atrazine detection by E. coli SM004 ranges from 1.08 to 15 μM. According to WHO recommendations, the cyanuric acid detection range is sensitive enough to discriminate between polluted and drinking water. Nevertheless, the detection of atrazine by E. coli SM004 is only applicable for high concentrations of contaminants.

No MeSH data available.


Related in: MedlinePlus

Example of the kinetic of bacterial bioluminescence production. E. coli SM003 strain in the presence of cyanuric acid (A), E. coli SM004 strain in the presence of cyanuric acid (C) or atrazine (E). Modeled curves of centered-reduced induction ratio for E. coli SM003 at an exposure time of 2 h 30 min in the presence of cyanuric acid (B), and E. coli SM004 at an exposure time of 1 h in the presence of cyanuric acid (D) or atrazine (F). Bioluminescence measurements and induction ratio are calculated from duplicate of three independent experiments.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4362333&req=5

Figure 2: Example of the kinetic of bacterial bioluminescence production. E. coli SM003 strain in the presence of cyanuric acid (A), E. coli SM004 strain in the presence of cyanuric acid (C) or atrazine (E). Modeled curves of centered-reduced induction ratio for E. coli SM003 at an exposure time of 2 h 30 min in the presence of cyanuric acid (B), and E. coli SM004 at an exposure time of 1 h in the presence of cyanuric acid (D) or atrazine (F). Bioluminescence measurements and induction ratio are calculated from duplicate of three independent experiments.

Mentions: E. coli SM003 strain was assessed for cyanuric acid biodetection. In the absence of the pollutant, luxCDABE genes expression were low and a basal bioluminescence was measured (approximately 70 RLU.s−1). In the presence of increasing concentrations of cyanuric acid, bioluminescence increased (Figure 2A). Thus, in the range of tested concentrations of cyanuric acid, bacterial response was concentration-dependent, demonstrating that the E. coli SM003 strain can be used as a cyanuric acid bioreporter, with a detection limit of 7.82 μM.


Development of a bacterial bioassay for atrazine and cyanuric acid detection.

Hua A, Gueuné H, Cregut M, Thouand G, Durand MJ - Front Microbiol (2015)

Example of the kinetic of bacterial bioluminescence production. E. coli SM003 strain in the presence of cyanuric acid (A), E. coli SM004 strain in the presence of cyanuric acid (C) or atrazine (E). Modeled curves of centered-reduced induction ratio for E. coli SM003 at an exposure time of 2 h 30 min in the presence of cyanuric acid (B), and E. coli SM004 at an exposure time of 1 h in the presence of cyanuric acid (D) or atrazine (F). Bioluminescence measurements and induction ratio are calculated from duplicate of three independent experiments.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4362333&req=5

Figure 2: Example of the kinetic of bacterial bioluminescence production. E. coli SM003 strain in the presence of cyanuric acid (A), E. coli SM004 strain in the presence of cyanuric acid (C) or atrazine (E). Modeled curves of centered-reduced induction ratio for E. coli SM003 at an exposure time of 2 h 30 min in the presence of cyanuric acid (B), and E. coli SM004 at an exposure time of 1 h in the presence of cyanuric acid (D) or atrazine (F). Bioluminescence measurements and induction ratio are calculated from duplicate of three independent experiments.
Mentions: E. coli SM003 strain was assessed for cyanuric acid biodetection. In the absence of the pollutant, luxCDABE genes expression were low and a basal bioluminescence was measured (approximately 70 RLU.s−1). In the presence of increasing concentrations of cyanuric acid, bioluminescence increased (Figure 2A). Thus, in the range of tested concentrations of cyanuric acid, bacterial response was concentration-dependent, demonstrating that the E. coli SM003 strain can be used as a cyanuric acid bioreporter, with a detection limit of 7.82 μM.

Bottom Line: Moreover, atrazine detection by E. coli SM004 ranges from 1.08 to 15 μM.According to WHO recommendations, the cyanuric acid detection range is sensitive enough to discriminate between polluted and drinking water.Nevertheless, the detection of atrazine by E. coli SM004 is only applicable for high concentrations of contaminants.

View Article: PubMed Central - PubMed

Affiliation: Nantes University, Campus de la Courtaisière - IUT, UMR CNRS 6144 GEPEA, CBAC La Roche-sur-Yon, France.

ABSTRACT
The s-triazine herbicides are compounds which can disseminate into soils and water. Due to their toxic effects on living organisms, their concentrations in drinking water are legislated by WHO recommendations. Here we have developed for the first time, to the best of our knowledge, an alternative method for physicochemical quantification using two bioluminescent bacterial biosensors: E. coli SM003 for cyanuric acid detection and E. coli SM004 for both atrazine and cyanuric acid detection. The concentration of cyanuric acid detection for E. coli SM003 ranges from 7.83 μM to 2.89 mM, and for E. coli SM004 ranges from 0.22 to 15 μM. Moreover, atrazine detection by E. coli SM004 ranges from 1.08 to 15 μM. According to WHO recommendations, the cyanuric acid detection range is sensitive enough to discriminate between polluted and drinking water. Nevertheless, the detection of atrazine by E. coli SM004 is only applicable for high concentrations of contaminants.

No MeSH data available.


Related in: MedlinePlus