Limits...
Mapping the global mRNA transcriptome during development of the murine first molar.

Landin MA, Nygård S, Shabestari MG, Babaie E, Reseland JE, Osmundsen H - Front Genet (2015)

Bottom Line: Differentially expressed genes (p < 0.05) were subjected to bioinformatic analysis to identify cellular activities significantly associated with these genes.The remaining 2441 genes were subjected to further statistical analysis using a supervised procedure.Differentially expressed genes (DE) not described earlier during murine tooth development; Inositol 1, 4, 5-triphosphate receptor 3 (Itpr3), metallothionein 1(Mt1), cyclin-dependent kinase 4 (Cdk4), cathepsin D (Ctsd), keratin complex 2, basic, gene 6a (Krt2-6a), cofilin 1, non-muscle (Cfl1), cyclin 2 (Ccnd2), were verified by real-time RT-PCR.

View Article: PubMed Central - PubMed

Affiliation: Department of Oral Biology, Faculty of Dentistry, University of Oslo Oslo, Norway.

ABSTRACT
The main objective of this study was to map global gene expression in order to provide information about the populations of mRNA species participating in murine tooth development at 24 h intervals, starting at the 11th embryonic day (E11.5) up to the 7th post-natal day (P7). The levels of RNA species expressed during murine tooth development were mesured using a total of 58 deoxyoligonucleotide microarrays. Microarray data was validated using real-time RT-PCR. Differentially expressed genes (p < 0.05) were subjected to bioinformatic analysis to identify cellular activities significantly associated with these genes. Using ANOVA the microarray data yielded 4362 genes as being differentially expressed from the 11th embryonic day (E11.5) up to 7 days post-natal (P7), 1921 of these being genes without known functions. The remaining 2441 genes were subjected to further statistical analysis using a supervised procedure. Bioinformatic analysis results for each time-point studied suggests that the main molecular functions associated with genes expressed at the early pre-natal stages (E12.5-E18.5) were cell cycle progression, cell morphology, lipid metabolism, cellular growth, proliferation, senescence and apoptosis, whereas most genes expressed at post-natal and secretory stages (P0-P7) were significantly associated with regulation of cell migration, biosynthesis, differentiation, oxidative stress, polarization and cell death. Differentially expressed genes (DE) not described earlier during murine tooth development; Inositol 1, 4, 5-triphosphate receptor 3 (Itpr3), metallothionein 1(Mt1), cyclin-dependent kinase 4 (Cdk4), cathepsin D (Ctsd), keratin complex 2, basic, gene 6a (Krt2-6a), cofilin 1, non-muscle (Cfl1), cyclin 2 (Ccnd2), were verified by real-time RT-PCR.

No MeSH data available.


Related in: MedlinePlus

Bioinformatics analysis of the global mRNA transcriptome during murine tooth development using Molecular & Cellular functions (A–F) significantly (p < 0.005) associated with DE genes expressed during murine tooth development.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4362327&req=5

Figure 4: Bioinformatics analysis of the global mRNA transcriptome during murine tooth development using Molecular & Cellular functions (A–F) significantly (p < 0.005) associated with DE genes expressed during murine tooth development.

Mentions: Bioinformatics analysis of the global gene expression significantly (p = 0.05) associated the 2441 differentially genes(p ≤ 0.05) of the dataset with the molecular and cellular functions: “Gene expression” (all time-points studied) (Figures 4A–F), “cellular growth and proliferation” (E12.5–E13.5) (Figure 4A), “RNA post-transcriptional modification” (E-12.5–E13.5 and P0–P7) (Figures 4A,D–F), “cell cycle,” “cell morphology” (E12.5-E14.5) (Figures 4A,B), “protein folding” (E12.5–E18.5) (Figures 4A–C), “nucleic acid metabolism” (E15.5-P7) (Figures 4B–F).


Mapping the global mRNA transcriptome during development of the murine first molar.

Landin MA, Nygård S, Shabestari MG, Babaie E, Reseland JE, Osmundsen H - Front Genet (2015)

Bioinformatics analysis of the global mRNA transcriptome during murine tooth development using Molecular & Cellular functions (A–F) significantly (p < 0.005) associated with DE genes expressed during murine tooth development.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4362327&req=5

Figure 4: Bioinformatics analysis of the global mRNA transcriptome during murine tooth development using Molecular & Cellular functions (A–F) significantly (p < 0.005) associated with DE genes expressed during murine tooth development.
Mentions: Bioinformatics analysis of the global gene expression significantly (p = 0.05) associated the 2441 differentially genes(p ≤ 0.05) of the dataset with the molecular and cellular functions: “Gene expression” (all time-points studied) (Figures 4A–F), “cellular growth and proliferation” (E12.5–E13.5) (Figure 4A), “RNA post-transcriptional modification” (E-12.5–E13.5 and P0–P7) (Figures 4A,D–F), “cell cycle,” “cell morphology” (E12.5-E14.5) (Figures 4A,B), “protein folding” (E12.5–E18.5) (Figures 4A–C), “nucleic acid metabolism” (E15.5-P7) (Figures 4B–F).

Bottom Line: Differentially expressed genes (p < 0.05) were subjected to bioinformatic analysis to identify cellular activities significantly associated with these genes.The remaining 2441 genes were subjected to further statistical analysis using a supervised procedure.Differentially expressed genes (DE) not described earlier during murine tooth development; Inositol 1, 4, 5-triphosphate receptor 3 (Itpr3), metallothionein 1(Mt1), cyclin-dependent kinase 4 (Cdk4), cathepsin D (Ctsd), keratin complex 2, basic, gene 6a (Krt2-6a), cofilin 1, non-muscle (Cfl1), cyclin 2 (Ccnd2), were verified by real-time RT-PCR.

View Article: PubMed Central - PubMed

Affiliation: Department of Oral Biology, Faculty of Dentistry, University of Oslo Oslo, Norway.

ABSTRACT
The main objective of this study was to map global gene expression in order to provide information about the populations of mRNA species participating in murine tooth development at 24 h intervals, starting at the 11th embryonic day (E11.5) up to the 7th post-natal day (P7). The levels of RNA species expressed during murine tooth development were mesured using a total of 58 deoxyoligonucleotide microarrays. Microarray data was validated using real-time RT-PCR. Differentially expressed genes (p < 0.05) were subjected to bioinformatic analysis to identify cellular activities significantly associated with these genes. Using ANOVA the microarray data yielded 4362 genes as being differentially expressed from the 11th embryonic day (E11.5) up to 7 days post-natal (P7), 1921 of these being genes without known functions. The remaining 2441 genes were subjected to further statistical analysis using a supervised procedure. Bioinformatic analysis results for each time-point studied suggests that the main molecular functions associated with genes expressed at the early pre-natal stages (E12.5-E18.5) were cell cycle progression, cell morphology, lipid metabolism, cellular growth, proliferation, senescence and apoptosis, whereas most genes expressed at post-natal and secretory stages (P0-P7) were significantly associated with regulation of cell migration, biosynthesis, differentiation, oxidative stress, polarization and cell death. Differentially expressed genes (DE) not described earlier during murine tooth development; Inositol 1, 4, 5-triphosphate receptor 3 (Itpr3), metallothionein 1(Mt1), cyclin-dependent kinase 4 (Cdk4), cathepsin D (Ctsd), keratin complex 2, basic, gene 6a (Krt2-6a), cofilin 1, non-muscle (Cfl1), cyclin 2 (Ccnd2), were verified by real-time RT-PCR.

No MeSH data available.


Related in: MedlinePlus