Limits...
Identification and comparative analysis of subolesin/akirin ortholog from Ornithodoros turicata ticks.

Sultana H, Patel U, Sonenshine DE, Neelakanta G - Parasit Vectors (2015)

Bottom Line: Our study reveals that O. turicata subolesin gene expression is developmentally regulated, where; adult ticks expressed significantly higher levels in comparison to the larvae or nymphal ticks.However, no myristoylation or glycosylation sites were evident in the O. turicata subolesin sequence.Our study provides important insights in recognizing subolesin as a conserved potential candidate for the development of a broad-spectrum anti-vector vaccine to control not only ticks but also several other arthropods that transmit diseases to humans and animals.

View Article: PubMed Central - PubMed

Affiliation: Center for Molecular Medicine, College of Sciences, Old Dominion University, Norfolk, 23529, VA, USA. hsultana@odu.edu.

ABSTRACT

Background: Subolesin is an evolutionary conserved molecule in diverse arthropod species that play an important role in the regulation of genes involved in immune responses, blood digestion, reproduction and development. In this study, we have identified a subolesin ortholog from soft ticks Ornithodoros turicata, the vector of the relapsing fever spirochete in the United States.

Methods: Uninfected fed or unfed O. turicata ticks were used throughout this study. The subolesin mRNA was amplified by reverse transcription polymerase chain reaction (RT-PCR) and sequenced. Quantitative-real time PCR (QRT-PCR) was performed to evaluate subolesin mRNA levels at different O. turicata developmental stages and from salivary glands and gut tissues. Bioinformatics and comparative analysis was performed to predict potential post-translational modifications in O. turicata subolesin amino-acid sequences.

Results: Our study reveals that O. turicata subolesin gene expression is developmentally regulated, where; adult ticks expressed significantly higher levels in comparison to the larvae or nymphal ticks. Expression of subolesin was evident in both unfed and fed ticks and in the salivary glands and midgut tissues. The expression of subolesin transcripts varied in fed ticks with peak levels at day 14 post-feeding. Phylogenetic analysis revealed that O. turicata subolesin showed a high degree of sequence conservation with subolesin's from other soft and hard ticks. Bioinformatics and comparative analysis predicted that O. turicata subolesin carry three Protein kinase C and one Casein kinase II phosphorylation sites. However, no myristoylation or glycosylation sites were evident in the O. turicata subolesin sequence.

Conclusion: Our study provides important insights in recognizing subolesin as a conserved potential candidate for the development of a broad-spectrum anti-vector vaccine to control not only ticks but also several other arthropods that transmit diseases to humans and animals.

No MeSH data available.


Related in: MedlinePlus

Expression ofO. turicatasubolesin is developmentally regulated. A) Total RNA from unfed larvae, nymphs and female adults was prepared and amount of O. turicata subolesin transcripts were quantified by QRT-PCR normalized to O. turicata 28S levels. Each triangle/square/circle represents one individual tick. B) Expression of subolesin transcripts in salivary glands (SG) and midguts (MG) isolated from fed adult female O. turicata ticks are shown. Each inverted triangle/circle represent one individual tissues sample isolated from one tick. C) QRT-PCR analysis of subolesin mRNA levels in fed O. turicata female ticks at different days post-feeding is shown. Each circle represents one tick. Statistics was performed using the Student’s t test and the P value is shown.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4359563&req=5

Fig6: Expression ofO. turicatasubolesin is developmentally regulated. A) Total RNA from unfed larvae, nymphs and female adults was prepared and amount of O. turicata subolesin transcripts were quantified by QRT-PCR normalized to O. turicata 28S levels. Each triangle/square/circle represents one individual tick. B) Expression of subolesin transcripts in salivary glands (SG) and midguts (MG) isolated from fed adult female O. turicata ticks are shown. Each inverted triangle/circle represent one individual tissues sample isolated from one tick. C) QRT-PCR analysis of subolesin mRNA levels in fed O. turicata female ticks at different days post-feeding is shown. Each circle represents one tick. Statistics was performed using the Student’s t test and the P value is shown.

Mentions: We determined whether Subolesin was regulated during O. turicata development. The subolesin mRNA levels were assessed by Quantitative real-time PCR using O. turicata 28S as an internal control. The subolesin was expressed at lower levels in larvae and nymphs but was significantly (P < 0.05) increased in adults (Figure 6A). To assess whether subolesin gene expression is differentially regulated in different tick tissues upon feeding, salivary gland and gut tissues were separately isolated from fed ticks and processed for RNA extraction and QRT-PCR analysis. We found no differences in the levels of subolesin transcripts between gut and salivary gland tissues that were isolated from fed ticks (Figure 6B). In addition, analysis of gene expression on different days post feeding revealed that in adult ticks the expression of O. turicata subolesin mRNA levels peaks up at day 14 post feeding in comparison to the early or late time points after feeding (Figure 6C). Collectively, these results revealed that subolesin expression is developmentally regulated, ubiquitously expressed in both salivary glands and gut tissues and suggest its role in blood digestion in O. turicata ticks.Figure 6


Identification and comparative analysis of subolesin/akirin ortholog from Ornithodoros turicata ticks.

Sultana H, Patel U, Sonenshine DE, Neelakanta G - Parasit Vectors (2015)

Expression ofO. turicatasubolesin is developmentally regulated. A) Total RNA from unfed larvae, nymphs and female adults was prepared and amount of O. turicata subolesin transcripts were quantified by QRT-PCR normalized to O. turicata 28S levels. Each triangle/square/circle represents one individual tick. B) Expression of subolesin transcripts in salivary glands (SG) and midguts (MG) isolated from fed adult female O. turicata ticks are shown. Each inverted triangle/circle represent one individual tissues sample isolated from one tick. C) QRT-PCR analysis of subolesin mRNA levels in fed O. turicata female ticks at different days post-feeding is shown. Each circle represents one tick. Statistics was performed using the Student’s t test and the P value is shown.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4359563&req=5

Fig6: Expression ofO. turicatasubolesin is developmentally regulated. A) Total RNA from unfed larvae, nymphs and female adults was prepared and amount of O. turicata subolesin transcripts were quantified by QRT-PCR normalized to O. turicata 28S levels. Each triangle/square/circle represents one individual tick. B) Expression of subolesin transcripts in salivary glands (SG) and midguts (MG) isolated from fed adult female O. turicata ticks are shown. Each inverted triangle/circle represent one individual tissues sample isolated from one tick. C) QRT-PCR analysis of subolesin mRNA levels in fed O. turicata female ticks at different days post-feeding is shown. Each circle represents one tick. Statistics was performed using the Student’s t test and the P value is shown.
Mentions: We determined whether Subolesin was regulated during O. turicata development. The subolesin mRNA levels were assessed by Quantitative real-time PCR using O. turicata 28S as an internal control. The subolesin was expressed at lower levels in larvae and nymphs but was significantly (P < 0.05) increased in adults (Figure 6A). To assess whether subolesin gene expression is differentially regulated in different tick tissues upon feeding, salivary gland and gut tissues were separately isolated from fed ticks and processed for RNA extraction and QRT-PCR analysis. We found no differences in the levels of subolesin transcripts between gut and salivary gland tissues that were isolated from fed ticks (Figure 6B). In addition, analysis of gene expression on different days post feeding revealed that in adult ticks the expression of O. turicata subolesin mRNA levels peaks up at day 14 post feeding in comparison to the early or late time points after feeding (Figure 6C). Collectively, these results revealed that subolesin expression is developmentally regulated, ubiquitously expressed in both salivary glands and gut tissues and suggest its role in blood digestion in O. turicata ticks.Figure 6

Bottom Line: Our study reveals that O. turicata subolesin gene expression is developmentally regulated, where; adult ticks expressed significantly higher levels in comparison to the larvae or nymphal ticks.However, no myristoylation or glycosylation sites were evident in the O. turicata subolesin sequence.Our study provides important insights in recognizing subolesin as a conserved potential candidate for the development of a broad-spectrum anti-vector vaccine to control not only ticks but also several other arthropods that transmit diseases to humans and animals.

View Article: PubMed Central - PubMed

Affiliation: Center for Molecular Medicine, College of Sciences, Old Dominion University, Norfolk, 23529, VA, USA. hsultana@odu.edu.

ABSTRACT

Background: Subolesin is an evolutionary conserved molecule in diverse arthropod species that play an important role in the regulation of genes involved in immune responses, blood digestion, reproduction and development. In this study, we have identified a subolesin ortholog from soft ticks Ornithodoros turicata, the vector of the relapsing fever spirochete in the United States.

Methods: Uninfected fed or unfed O. turicata ticks were used throughout this study. The subolesin mRNA was amplified by reverse transcription polymerase chain reaction (RT-PCR) and sequenced. Quantitative-real time PCR (QRT-PCR) was performed to evaluate subolesin mRNA levels at different O. turicata developmental stages and from salivary glands and gut tissues. Bioinformatics and comparative analysis was performed to predict potential post-translational modifications in O. turicata subolesin amino-acid sequences.

Results: Our study reveals that O. turicata subolesin gene expression is developmentally regulated, where; adult ticks expressed significantly higher levels in comparison to the larvae or nymphal ticks. Expression of subolesin was evident in both unfed and fed ticks and in the salivary glands and midgut tissues. The expression of subolesin transcripts varied in fed ticks with peak levels at day 14 post-feeding. Phylogenetic analysis revealed that O. turicata subolesin showed a high degree of sequence conservation with subolesin's from other soft and hard ticks. Bioinformatics and comparative analysis predicted that O. turicata subolesin carry three Protein kinase C and one Casein kinase II phosphorylation sites. However, no myristoylation or glycosylation sites were evident in the O. turicata subolesin sequence.

Conclusion: Our study provides important insights in recognizing subolesin as a conserved potential candidate for the development of a broad-spectrum anti-vector vaccine to control not only ticks but also several other arthropods that transmit diseases to humans and animals.

No MeSH data available.


Related in: MedlinePlus