Limits...
Identification and comparative analysis of subolesin/akirin ortholog from Ornithodoros turicata ticks.

Sultana H, Patel U, Sonenshine DE, Neelakanta G - Parasit Vectors (2015)

Bottom Line: Our study reveals that O. turicata subolesin gene expression is developmentally regulated, where; adult ticks expressed significantly higher levels in comparison to the larvae or nymphal ticks.However, no myristoylation or glycosylation sites were evident in the O. turicata subolesin sequence.Our study provides important insights in recognizing subolesin as a conserved potential candidate for the development of a broad-spectrum anti-vector vaccine to control not only ticks but also several other arthropods that transmit diseases to humans and animals.

View Article: PubMed Central - PubMed

Affiliation: Center for Molecular Medicine, College of Sciences, Old Dominion University, Norfolk, 23529, VA, USA. hsultana@odu.edu.

ABSTRACT

Background: Subolesin is an evolutionary conserved molecule in diverse arthropod species that play an important role in the regulation of genes involved in immune responses, blood digestion, reproduction and development. In this study, we have identified a subolesin ortholog from soft ticks Ornithodoros turicata, the vector of the relapsing fever spirochete in the United States.

Methods: Uninfected fed or unfed O. turicata ticks were used throughout this study. The subolesin mRNA was amplified by reverse transcription polymerase chain reaction (RT-PCR) and sequenced. Quantitative-real time PCR (QRT-PCR) was performed to evaluate subolesin mRNA levels at different O. turicata developmental stages and from salivary glands and gut tissues. Bioinformatics and comparative analysis was performed to predict potential post-translational modifications in O. turicata subolesin amino-acid sequences.

Results: Our study reveals that O. turicata subolesin gene expression is developmentally regulated, where; adult ticks expressed significantly higher levels in comparison to the larvae or nymphal ticks. Expression of subolesin was evident in both unfed and fed ticks and in the salivary glands and midgut tissues. The expression of subolesin transcripts varied in fed ticks with peak levels at day 14 post-feeding. Phylogenetic analysis revealed that O. turicata subolesin showed a high degree of sequence conservation with subolesin's from other soft and hard ticks. Bioinformatics and comparative analysis predicted that O. turicata subolesin carry three Protein kinase C and one Casein kinase II phosphorylation sites. However, no myristoylation or glycosylation sites were evident in the O. turicata subolesin sequence.

Conclusion: Our study provides important insights in recognizing subolesin as a conserved potential candidate for the development of a broad-spectrum anti-vector vaccine to control not only ticks but also several other arthropods that transmit diseases to humans and animals.

No MeSH data available.


Related in: MedlinePlus

Phylogenetic analysis ofO. turicatasubolesin with soft ticks, hard ticks and diptera subolesin amino acid sequences. Phylogenetic analysis was performed in DNASTAR by ClustalW slow/accurate alignment method using Gonnet as default value for protein weight matrix. Scale shows amino acid substitution per 100 residues. O. turicata subolesin sequence comes within the same clade with other soft and hard ticks. GenBank accession number for each sequences are mentioned in the Methods section.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4359563&req=5

Fig4: Phylogenetic analysis ofO. turicatasubolesin with soft ticks, hard ticks and diptera subolesin amino acid sequences. Phylogenetic analysis was performed in DNASTAR by ClustalW slow/accurate alignment method using Gonnet as default value for protein weight matrix. Scale shows amino acid substitution per 100 residues. O. turicata subolesin sequence comes within the same clade with other soft and hard ticks. GenBank accession number for each sequences are mentioned in the Methods section.

Mentions: The subolesin/akirin primary amino acid sequences from thirteen hard ticks, two soft ticks, four mosquito species and one from Glossina morsitans were downloaded from National center for Biotechnology information (NCBI). Alignment of deduced amino acid sequence of O. turicata with other sequences using the Clustal W program revealed a high degree of conservation across the entire amino acid sequences (Figure 2). The O. turicata subolesin amino acid sequence shares approximately 50% identity with G. morsitans, 50-56% identity with several mosquito species, 79-88% identity with several hard ticks, 88.5% identity with O. moubata and 93% identity with O. erraticus ticks (Figure 3). The phylogenetic analysis of deduced subolesin amino acid sequences showed that O. turicata sequence comes within the same clade as other soft ticks (O. erraticus and O. moubata) and hard ticks. Glossina and mosquito subolesin sequences formed a different clade that was separated from hard and soft ticks (Figure 4).Figure 2


Identification and comparative analysis of subolesin/akirin ortholog from Ornithodoros turicata ticks.

Sultana H, Patel U, Sonenshine DE, Neelakanta G - Parasit Vectors (2015)

Phylogenetic analysis ofO. turicatasubolesin with soft ticks, hard ticks and diptera subolesin amino acid sequences. Phylogenetic analysis was performed in DNASTAR by ClustalW slow/accurate alignment method using Gonnet as default value for protein weight matrix. Scale shows amino acid substitution per 100 residues. O. turicata subolesin sequence comes within the same clade with other soft and hard ticks. GenBank accession number for each sequences are mentioned in the Methods section.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4359563&req=5

Fig4: Phylogenetic analysis ofO. turicatasubolesin with soft ticks, hard ticks and diptera subolesin amino acid sequences. Phylogenetic analysis was performed in DNASTAR by ClustalW slow/accurate alignment method using Gonnet as default value for protein weight matrix. Scale shows amino acid substitution per 100 residues. O. turicata subolesin sequence comes within the same clade with other soft and hard ticks. GenBank accession number for each sequences are mentioned in the Methods section.
Mentions: The subolesin/akirin primary amino acid sequences from thirteen hard ticks, two soft ticks, four mosquito species and one from Glossina morsitans were downloaded from National center for Biotechnology information (NCBI). Alignment of deduced amino acid sequence of O. turicata with other sequences using the Clustal W program revealed a high degree of conservation across the entire amino acid sequences (Figure 2). The O. turicata subolesin amino acid sequence shares approximately 50% identity with G. morsitans, 50-56% identity with several mosquito species, 79-88% identity with several hard ticks, 88.5% identity with O. moubata and 93% identity with O. erraticus ticks (Figure 3). The phylogenetic analysis of deduced subolesin amino acid sequences showed that O. turicata sequence comes within the same clade as other soft ticks (O. erraticus and O. moubata) and hard ticks. Glossina and mosquito subolesin sequences formed a different clade that was separated from hard and soft ticks (Figure 4).Figure 2

Bottom Line: Our study reveals that O. turicata subolesin gene expression is developmentally regulated, where; adult ticks expressed significantly higher levels in comparison to the larvae or nymphal ticks.However, no myristoylation or glycosylation sites were evident in the O. turicata subolesin sequence.Our study provides important insights in recognizing subolesin as a conserved potential candidate for the development of a broad-spectrum anti-vector vaccine to control not only ticks but also several other arthropods that transmit diseases to humans and animals.

View Article: PubMed Central - PubMed

Affiliation: Center for Molecular Medicine, College of Sciences, Old Dominion University, Norfolk, 23529, VA, USA. hsultana@odu.edu.

ABSTRACT

Background: Subolesin is an evolutionary conserved molecule in diverse arthropod species that play an important role in the regulation of genes involved in immune responses, blood digestion, reproduction and development. In this study, we have identified a subolesin ortholog from soft ticks Ornithodoros turicata, the vector of the relapsing fever spirochete in the United States.

Methods: Uninfected fed or unfed O. turicata ticks were used throughout this study. The subolesin mRNA was amplified by reverse transcription polymerase chain reaction (RT-PCR) and sequenced. Quantitative-real time PCR (QRT-PCR) was performed to evaluate subolesin mRNA levels at different O. turicata developmental stages and from salivary glands and gut tissues. Bioinformatics and comparative analysis was performed to predict potential post-translational modifications in O. turicata subolesin amino-acid sequences.

Results: Our study reveals that O. turicata subolesin gene expression is developmentally regulated, where; adult ticks expressed significantly higher levels in comparison to the larvae or nymphal ticks. Expression of subolesin was evident in both unfed and fed ticks and in the salivary glands and midgut tissues. The expression of subolesin transcripts varied in fed ticks with peak levels at day 14 post-feeding. Phylogenetic analysis revealed that O. turicata subolesin showed a high degree of sequence conservation with subolesin's from other soft and hard ticks. Bioinformatics and comparative analysis predicted that O. turicata subolesin carry three Protein kinase C and one Casein kinase II phosphorylation sites. However, no myristoylation or glycosylation sites were evident in the O. turicata subolesin sequence.

Conclusion: Our study provides important insights in recognizing subolesin as a conserved potential candidate for the development of a broad-spectrum anti-vector vaccine to control not only ticks but also several other arthropods that transmit diseases to humans and animals.

No MeSH data available.


Related in: MedlinePlus