Limits...
How do high glycemic load diets influence coronary heart disease?

Mathews MJ, Liebenberg L, Mathews EH - Nutr Metab (Lond) (2015)

Bottom Line: However, LDL is not the only or even the most important biomarker for CHD risk.From this an integrated CHD pathogenetic pathway system was constructed.A focus primarily on the low density lipoprotein cholesterol biomarker for CHD risk has led to the traditional guidelines of CHD dietary recommendations.

View Article: PubMed Central - PubMed

Affiliation: CRCED, North-West University, and consultants to TEMM International (Pty) Ltd, P.O. Box 11207, Silver Lakes, 0054 South Africa.

ABSTRACT

Background: Diet has a significant relationship with the risk of coronary heart disease (CHD). Traditionally the effect of diet on CHD was measured with the biomarker for low-density lipoprotein (LDL) cholesterol. However, LDL is not the only or even the most important biomarker for CHD risk. A suitably integrated view of the mechanism by which diet influences the detailed CHD pathogenetic pathways is therefore needed in order to better understand CHD risk factors and help with better holistic CHD prevention and treatment decisions.

Methods: A systematic review of the existing literature was conducted. From this an integrated CHD pathogenetic pathway system was constructed. CHD biomarkers, which are found on these pathways, are the only measurable data to link diet with these CHD pathways. They were thus used to simplify the link between diet and the CHD mechanism. Data were systematically analysed from 294 cohort studies of CHD biomarkers constituting 1 187 350 patients.

Results and discussion: The resulting integrated analysis provides insight into the higher-order interactions underlying CHD and high-glycemic load (HGL) diets. A novel "connection graph" illustrates the measurable relationship between HGL diets and the relative risks attributed to the important CHD serological biomarkers. The "connection graph" vividly shows that HGL diets not only influence the lipid and metabolic biomarkers, but also the inflammation, coagulation and vascular function biomarkers in an important way.

Conclusion: A focus primarily on the low density lipoprotein cholesterol biomarker for CHD risk has led to the traditional guidelines of CHD dietary recommendations. This has however inadvertently led to HGL diets. The influence of HGL diets on the other CHD biomarkers is not always fully appreciated. Thus, new diets or other interventions which address the full integrated CHD impact, as shown in this paper, are required.

No MeSH data available.


Related in: MedlinePlus

Normalised relative risks (fold-change) of salient current and potential biomarkers for CHD. Increased IGF-1 and HDL levels are associated with a moderately decreased CHD risk. (IGF-1 and HDL levels are significantly inversely correlated to relative risk for CHD.) N indicates number of trials; I, standard error; Adipo, adiponectin; HDL, high-density lipoprotein; BNP, B-type natriuretic peptide; ACR, albumin-to-creatinine ratio; GDF-15, growth-differentiation factor-15; Cysteine, Homocysteine; LDL, low-density lipoprotein; HbA1c, glycosylated haemoglobin A1c; Trop, troponins; Trigl, triglycerides; CRP, C-reactive protein; IL-6, interleukin-6; Fibrin, fibrinogen; Cort, cortisol; TNF-α, tumour necrosis factor-α; ApoB, apolipoprotein-B; IGF-1, insulin-like growth factor-1; MPO, myeloperoxidase; RANKL or OPG, osteoprotegerin; BDNF, brain-derived neurotrophic factor.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4359552&req=5

Fig2: Normalised relative risks (fold-change) of salient current and potential biomarkers for CHD. Increased IGF-1 and HDL levels are associated with a moderately decreased CHD risk. (IGF-1 and HDL levels are significantly inversely correlated to relative risk for CHD.) N indicates number of trials; I, standard error; Adipo, adiponectin; HDL, high-density lipoprotein; BNP, B-type natriuretic peptide; ACR, albumin-to-creatinine ratio; GDF-15, growth-differentiation factor-15; Cysteine, Homocysteine; LDL, low-density lipoprotein; HbA1c, glycosylated haemoglobin A1c; Trop, troponins; Trigl, triglycerides; CRP, C-reactive protein; IL-6, interleukin-6; Fibrin, fibrinogen; Cort, cortisol; TNF-α, tumour necrosis factor-α; ApoB, apolipoprotein-B; IGF-1, insulin-like growth factor-1; MPO, myeloperoxidase; RANKL or OPG, osteoprotegerin; BDNF, brain-derived neurotrophic factor.

Mentions: Putative effects of high glycemic load diets and salient CHD pathogenetic pathways


How do high glycemic load diets influence coronary heart disease?

Mathews MJ, Liebenberg L, Mathews EH - Nutr Metab (Lond) (2015)

Normalised relative risks (fold-change) of salient current and potential biomarkers for CHD. Increased IGF-1 and HDL levels are associated with a moderately decreased CHD risk. (IGF-1 and HDL levels are significantly inversely correlated to relative risk for CHD.) N indicates number of trials; I, standard error; Adipo, adiponectin; HDL, high-density lipoprotein; BNP, B-type natriuretic peptide; ACR, albumin-to-creatinine ratio; GDF-15, growth-differentiation factor-15; Cysteine, Homocysteine; LDL, low-density lipoprotein; HbA1c, glycosylated haemoglobin A1c; Trop, troponins; Trigl, triglycerides; CRP, C-reactive protein; IL-6, interleukin-6; Fibrin, fibrinogen; Cort, cortisol; TNF-α, tumour necrosis factor-α; ApoB, apolipoprotein-B; IGF-1, insulin-like growth factor-1; MPO, myeloperoxidase; RANKL or OPG, osteoprotegerin; BDNF, brain-derived neurotrophic factor.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4359552&req=5

Fig2: Normalised relative risks (fold-change) of salient current and potential biomarkers for CHD. Increased IGF-1 and HDL levels are associated with a moderately decreased CHD risk. (IGF-1 and HDL levels are significantly inversely correlated to relative risk for CHD.) N indicates number of trials; I, standard error; Adipo, adiponectin; HDL, high-density lipoprotein; BNP, B-type natriuretic peptide; ACR, albumin-to-creatinine ratio; GDF-15, growth-differentiation factor-15; Cysteine, Homocysteine; LDL, low-density lipoprotein; HbA1c, glycosylated haemoglobin A1c; Trop, troponins; Trigl, triglycerides; CRP, C-reactive protein; IL-6, interleukin-6; Fibrin, fibrinogen; Cort, cortisol; TNF-α, tumour necrosis factor-α; ApoB, apolipoprotein-B; IGF-1, insulin-like growth factor-1; MPO, myeloperoxidase; RANKL or OPG, osteoprotegerin; BDNF, brain-derived neurotrophic factor.
Mentions: Putative effects of high glycemic load diets and salient CHD pathogenetic pathways

Bottom Line: However, LDL is not the only or even the most important biomarker for CHD risk.From this an integrated CHD pathogenetic pathway system was constructed.A focus primarily on the low density lipoprotein cholesterol biomarker for CHD risk has led to the traditional guidelines of CHD dietary recommendations.

View Article: PubMed Central - PubMed

Affiliation: CRCED, North-West University, and consultants to TEMM International (Pty) Ltd, P.O. Box 11207, Silver Lakes, 0054 South Africa.

ABSTRACT

Background: Diet has a significant relationship with the risk of coronary heart disease (CHD). Traditionally the effect of diet on CHD was measured with the biomarker for low-density lipoprotein (LDL) cholesterol. However, LDL is not the only or even the most important biomarker for CHD risk. A suitably integrated view of the mechanism by which diet influences the detailed CHD pathogenetic pathways is therefore needed in order to better understand CHD risk factors and help with better holistic CHD prevention and treatment decisions.

Methods: A systematic review of the existing literature was conducted. From this an integrated CHD pathogenetic pathway system was constructed. CHD biomarkers, which are found on these pathways, are the only measurable data to link diet with these CHD pathways. They were thus used to simplify the link between diet and the CHD mechanism. Data were systematically analysed from 294 cohort studies of CHD biomarkers constituting 1 187 350 patients.

Results and discussion: The resulting integrated analysis provides insight into the higher-order interactions underlying CHD and high-glycemic load (HGL) diets. A novel "connection graph" illustrates the measurable relationship between HGL diets and the relative risks attributed to the important CHD serological biomarkers. The "connection graph" vividly shows that HGL diets not only influence the lipid and metabolic biomarkers, but also the inflammation, coagulation and vascular function biomarkers in an important way.

Conclusion: A focus primarily on the low density lipoprotein cholesterol biomarker for CHD risk has led to the traditional guidelines of CHD dietary recommendations. This has however inadvertently led to HGL diets. The influence of HGL diets on the other CHD biomarkers is not always fully appreciated. Thus, new diets or other interventions which address the full integrated CHD impact, as shown in this paper, are required.

No MeSH data available.


Related in: MedlinePlus