Limits...
LAMP-2 deficiency leads to hippocampal dysfunction but normal clearance of neuronal substrates of chaperone-mediated autophagy in a mouse model for Danon disease.

Rothaug M, Stroobants S, Schweizer M, Peters J, Zunke F, Allerding M, D'Hooge R, Saftig P, Blanz J - Acta Neuropathol Commun (2015)

Bottom Line: Intellectual dysfunction observed in the human disease suggests a pivotal role of LAMP-2 within brain.The absence of LAMP-2 in murine brain led to inflammation and abnormal behavior, including motor deficits and impaired learning.The absence of LAMP-2 did not apparently affect MA or steady-state levels of selected CMA substrates in brain or neuroblastoma cells under physiological and prolonged starvation conditions.

View Article: PubMed Central - PubMed

ABSTRACT
The Lysosomal Associated Membrane Protein type-2 (LAMP-2) is an abundant lysosomal membrane protein with an important role in immunity, macroautophagy (MA) and chaperone-mediated autophagy (CMA). Mutations within the Lamp2 gene cause Danon disease, an X-linked lysosomal storage disorder characterized by (cardio)myopathy and intellectual dysfunction. The pathological hallmark of this disease is an accumulation of glycogen and autophagic vacuoles in cardiac and skeletal muscle that, along with the myopathy, is also present in LAMP-2-deficient mice. Intellectual dysfunction observed in the human disease suggests a pivotal role of LAMP-2 within brain. LAMP-2A, one specific LAMP-2 isoform, was proposed to be important for the lysosomal degradation of selective proteins involved in neurodegenerative diseases such as Huntington's and Parkinson's disease. To elucidate the neuronal function of LAMP-2 we analyzed knockout mice for neuropathological changes, MA and steady-state levels of CMA substrates. The absence of LAMP-2 in murine brain led to inflammation and abnormal behavior, including motor deficits and impaired learning. The latter abnormality points to hippocampal dysfunction caused by altered lysosomal activity, distinct accumulation of p62-positive aggregates, autophagic vacuoles and lipid storage within hippocampal neurons and their presynaptic terminals. The absence of LAMP-2 did not apparently affect MA or steady-state levels of selected CMA substrates in brain or neuroblastoma cells under physiological and prolonged starvation conditions. Our data contribute to the understanding of intellectual dysfunction observed in Danon disease patients and highlight the role of LAMP-2 within the central nervous system, particularly the hippocampus.

Show MeSH

Related in: MedlinePlus

Accumulation of p62 and filipin positive autophagic vesicles correlates with axonal and synaptic pathology in mice lacking LAMP-2. Representative histological brain sections of wild-type (WT) and LAMP-2-deficient (LAMP-2-/y) mice stained for (a) p62 using DAB (sections were costained with Nissl; arrows point to p62-positive punctae; zoomed image shown to right of main images). (b) Filipin stained sections showing cholesterol storage within the subiculum of LAMP-2-/y mice (insets show zoomed images of outlined area; arrows highlight storage). (c) High power electron micrographs from the subiculum and hippocampal CA3 region from LAMP-2-/y mice. Neurites and presynaptic terminals showed numerous autophagosomes with storage material of different nature (arrows point to lipofuscin (L), autophagosomes (AP), autophagic vacuoles (AV) and lipid whorls (LW), S denotes a synaptic spine).
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4359523&req=5

Fig5: Accumulation of p62 and filipin positive autophagic vesicles correlates with axonal and synaptic pathology in mice lacking LAMP-2. Representative histological brain sections of wild-type (WT) and LAMP-2-deficient (LAMP-2-/y) mice stained for (a) p62 using DAB (sections were costained with Nissl; arrows point to p62-positive punctae; zoomed image shown to right of main images). (b) Filipin stained sections showing cholesterol storage within the subiculum of LAMP-2-/y mice (insets show zoomed images of outlined area; arrows highlight storage). (c) High power electron micrographs from the subiculum and hippocampal CA3 region from LAMP-2-/y mice. Neurites and presynaptic terminals showed numerous autophagosomes with storage material of different nature (arrows point to lipofuscin (L), autophagosomes (AP), autophagic vacuoles (AV) and lipid whorls (LW), S denotes a synaptic spine).

Mentions: Degradation of long-lived proteins which has been shown to be impaired in LAMP-2-deficient hepatocytes [4] mainly occurs by autophagy [38]. The detection of increased levels of proteins that are pivotal for the autophagic flow and are degraded in the lysosome, such as the adaptor protein sequestosome 1 (SQSTM1/p62) [39,40], is widely used as an indication of impaired autophagy. Immunohistochemical analysis of LAMP-2-deficient brain revealed a distinct accumulation of p62-positive aggregates specifically within the subiculum and CA1 region of the hippocampus and the pons (FigureĀ 5a).Figure 5


LAMP-2 deficiency leads to hippocampal dysfunction but normal clearance of neuronal substrates of chaperone-mediated autophagy in a mouse model for Danon disease.

Rothaug M, Stroobants S, Schweizer M, Peters J, Zunke F, Allerding M, D'Hooge R, Saftig P, Blanz J - Acta Neuropathol Commun (2015)

Accumulation of p62 and filipin positive autophagic vesicles correlates with axonal and synaptic pathology in mice lacking LAMP-2. Representative histological brain sections of wild-type (WT) and LAMP-2-deficient (LAMP-2-/y) mice stained for (a) p62 using DAB (sections were costained with Nissl; arrows point to p62-positive punctae; zoomed image shown to right of main images). (b) Filipin stained sections showing cholesterol storage within the subiculum of LAMP-2-/y mice (insets show zoomed images of outlined area; arrows highlight storage). (c) High power electron micrographs from the subiculum and hippocampal CA3 region from LAMP-2-/y mice. Neurites and presynaptic terminals showed numerous autophagosomes with storage material of different nature (arrows point to lipofuscin (L), autophagosomes (AP), autophagic vacuoles (AV) and lipid whorls (LW), S denotes a synaptic spine).
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4359523&req=5

Fig5: Accumulation of p62 and filipin positive autophagic vesicles correlates with axonal and synaptic pathology in mice lacking LAMP-2. Representative histological brain sections of wild-type (WT) and LAMP-2-deficient (LAMP-2-/y) mice stained for (a) p62 using DAB (sections were costained with Nissl; arrows point to p62-positive punctae; zoomed image shown to right of main images). (b) Filipin stained sections showing cholesterol storage within the subiculum of LAMP-2-/y mice (insets show zoomed images of outlined area; arrows highlight storage). (c) High power electron micrographs from the subiculum and hippocampal CA3 region from LAMP-2-/y mice. Neurites and presynaptic terminals showed numerous autophagosomes with storage material of different nature (arrows point to lipofuscin (L), autophagosomes (AP), autophagic vacuoles (AV) and lipid whorls (LW), S denotes a synaptic spine).
Mentions: Degradation of long-lived proteins which has been shown to be impaired in LAMP-2-deficient hepatocytes [4] mainly occurs by autophagy [38]. The detection of increased levels of proteins that are pivotal for the autophagic flow and are degraded in the lysosome, such as the adaptor protein sequestosome 1 (SQSTM1/p62) [39,40], is widely used as an indication of impaired autophagy. Immunohistochemical analysis of LAMP-2-deficient brain revealed a distinct accumulation of p62-positive aggregates specifically within the subiculum and CA1 region of the hippocampus and the pons (FigureĀ 5a).Figure 5

Bottom Line: Intellectual dysfunction observed in the human disease suggests a pivotal role of LAMP-2 within brain.The absence of LAMP-2 in murine brain led to inflammation and abnormal behavior, including motor deficits and impaired learning.The absence of LAMP-2 did not apparently affect MA or steady-state levels of selected CMA substrates in brain or neuroblastoma cells under physiological and prolonged starvation conditions.

View Article: PubMed Central - PubMed

ABSTRACT
The Lysosomal Associated Membrane Protein type-2 (LAMP-2) is an abundant lysosomal membrane protein with an important role in immunity, macroautophagy (MA) and chaperone-mediated autophagy (CMA). Mutations within the Lamp2 gene cause Danon disease, an X-linked lysosomal storage disorder characterized by (cardio)myopathy and intellectual dysfunction. The pathological hallmark of this disease is an accumulation of glycogen and autophagic vacuoles in cardiac and skeletal muscle that, along with the myopathy, is also present in LAMP-2-deficient mice. Intellectual dysfunction observed in the human disease suggests a pivotal role of LAMP-2 within brain. LAMP-2A, one specific LAMP-2 isoform, was proposed to be important for the lysosomal degradation of selective proteins involved in neurodegenerative diseases such as Huntington's and Parkinson's disease. To elucidate the neuronal function of LAMP-2 we analyzed knockout mice for neuropathological changes, MA and steady-state levels of CMA substrates. The absence of LAMP-2 in murine brain led to inflammation and abnormal behavior, including motor deficits and impaired learning. The latter abnormality points to hippocampal dysfunction caused by altered lysosomal activity, distinct accumulation of p62-positive aggregates, autophagic vacuoles and lipid storage within hippocampal neurons and their presynaptic terminals. The absence of LAMP-2 did not apparently affect MA or steady-state levels of selected CMA substrates in brain or neuroblastoma cells under physiological and prolonged starvation conditions. Our data contribute to the understanding of intellectual dysfunction observed in Danon disease patients and highlight the role of LAMP-2 within the central nervous system, particularly the hippocampus.

Show MeSH
Related in: MedlinePlus