Limits...
Transcript profiling of different types of multiple sclerosis lesions yields FGF1 as a promoter of remyelination.

Mohan H, Friese A, Albrecht S, Krumbholz M, Elliott CL, Arthur A, Menon R, Farina C, Junker A, Stadelmann C, Barnett SC, Huitinga I, Wekerle H, Hohlfeld R, Lassmann H, Kuhlmann T, Linington C, Meinl E - Acta Neuropathol Commun (2014)

Bottom Line: We dissected remyelinated, demyelinated active, and demyelinated inactive white matter MS lesions, and compared transcript levels of myelination and inflammation-related genes using quantitative PCR on customized TaqMan Low Density Arrays.In remyelinated lesions, fibroblast growth factor (FGF) 1 was the most abundant of all analyzed myelination-regulating factors, showed a trend towards higher expression as compared to demyelinated lesions and was significantly higher than in control white matter.Two MS tissue blocks comprised lesions with adjacent de- and remyelinated areas and FGF1 expression was higher in the remyelinated rim compared to the demyelinated lesion core.

View Article: PubMed Central - PubMed

Affiliation: Institute of Clinical Neuroimmunology, Ludwig Maximilian University Munich, Marchioninistraße 15, D-81377, Munich, Germany. hema.mohan@ukmuenster.de.

ABSTRACT
Chronic demyelination is a pathological hallmark of multiple sclerosis (MS). Only a minority of MS lesions remyelinates completely. Enhancing remyelination is, therefore, a major aim of future MS therapies. Here we took a novel approach to identify factors that may inhibit or support endogenous remyelination in MS. We dissected remyelinated, demyelinated active, and demyelinated inactive white matter MS lesions, and compared transcript levels of myelination and inflammation-related genes using quantitative PCR on customized TaqMan Low Density Arrays. In remyelinated lesions, fibroblast growth factor (FGF) 1 was the most abundant of all analyzed myelination-regulating factors, showed a trend towards higher expression as compared to demyelinated lesions and was significantly higher than in control white matter. Two MS tissue blocks comprised lesions with adjacent de- and remyelinated areas and FGF1 expression was higher in the remyelinated rim compared to the demyelinated lesion core. In functional experiments, FGF1 accelerated developmental myelination in dissociated mixed cultures and promoted remyelination in slice cultures, whereas it decelerated differentiation of purified primary oligodendrocytes, suggesting that promotion of remyelination by FGF1 is based on an indirect mechanism. The analysis of human astrocyte responses to FGF1 by genome wide expression profiling showed that FGF1 induced the expression of the chemokine CXCL8 and leukemia inhibitory factor, two factors implicated in recruitment of oligodendrocytes and promotion of remyelination. Together, this study presents a transcript profiling of remyelinated MS lesions and identified FGF1 as a promoter of remyelination. Modulation of FGF family members might improve myelin repair in MS.

Show MeSH

Related in: MedlinePlus

FGF1 promotes myelination in dissociated spinal cord cultures. Myelinating cultures were treated with different concentrations of FGF1 from 22 DIV to 26 DIV and then stained for myelin (MBP in green) and axons (SMI-31 in red). (a) FGF1 treated cultures showed enhanced levels of MBP+ myelin sheath as compared to the control cultures. Magnification: left panel = 10X, right panel = 40X. (b) Quantitative evaluation: FG1 promotes myelination ****P <0.0001. Error bars represent SEM of two experiments. Myelinating cultures were treated with 100 ng/ml FGF1 for different time periods. Axonal density calculated as pixel for NFL (different FGF1 dosages/control) were 1.17 for 5 ng/ml FGF1, 1.2 for 50 ng/ml FGF1 and 1.06 for 50 ng/ml FGF1. (c) 16 days (12 DIV to 28 DIV) and (d) 6 days (12 DIV to 18 DIV). The myelination was enhanced at day 18 and 24, but unaltered at day 28. ****P <0.0001. Significance of data values was analyzed using T-test. Error bars represent SEM from three independent experiments. The axonal densities (FGF1/control) ranged between 0.98 and 1.02 in the experiments shown in (c) and (d).
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4359505&req=5

Fig5: FGF1 promotes myelination in dissociated spinal cord cultures. Myelinating cultures were treated with different concentrations of FGF1 from 22 DIV to 26 DIV and then stained for myelin (MBP in green) and axons (SMI-31 in red). (a) FGF1 treated cultures showed enhanced levels of MBP+ myelin sheath as compared to the control cultures. Magnification: left panel = 10X, right panel = 40X. (b) Quantitative evaluation: FG1 promotes myelination ****P <0.0001. Error bars represent SEM of two experiments. Myelinating cultures were treated with 100 ng/ml FGF1 for different time periods. Axonal density calculated as pixel for NFL (different FGF1 dosages/control) were 1.17 for 5 ng/ml FGF1, 1.2 for 50 ng/ml FGF1 and 1.06 for 50 ng/ml FGF1. (c) 16 days (12 DIV to 28 DIV) and (d) 6 days (12 DIV to 18 DIV). The myelination was enhanced at day 18 and 24, but unaltered at day 28. ****P <0.0001. Significance of data values was analyzed using T-test. Error bars represent SEM from three independent experiments. The axonal densities (FGF1/control) ranged between 0.98 and 1.02 in the experiments shown in (c) and (d).

Mentions: Three independent conditions were used to assess ability of FGF1 to stimulate myelination in these cultures. First, FGF1 was added for four days after the onset of myelination and this enhanced myelination up to 1.7-fold (p < 0.0001) (Figure 5a and 5b). Second, FGF1 was added before the onset of myelination at day 12 for a total of 16 days. Again, we observed FGF1 enhanced myelination, particularly at 18 and 24 days in vitro (DIV) (Figure 5c). Third, FGF1 was added before the onset of myelination for 6 days (12–18 DIV) and then withdrawn while myelination was still ongoing. Enhanced myelination could already be detected during the initial phase of myelination, was still seen six days after FGF1 was withdrawn and then disappeared thereafter (Figure 5d). This indicates that FGF1 accelerates myelination in this culture system.Figure 5


Transcript profiling of different types of multiple sclerosis lesions yields FGF1 as a promoter of remyelination.

Mohan H, Friese A, Albrecht S, Krumbholz M, Elliott CL, Arthur A, Menon R, Farina C, Junker A, Stadelmann C, Barnett SC, Huitinga I, Wekerle H, Hohlfeld R, Lassmann H, Kuhlmann T, Linington C, Meinl E - Acta Neuropathol Commun (2014)

FGF1 promotes myelination in dissociated spinal cord cultures. Myelinating cultures were treated with different concentrations of FGF1 from 22 DIV to 26 DIV and then stained for myelin (MBP in green) and axons (SMI-31 in red). (a) FGF1 treated cultures showed enhanced levels of MBP+ myelin sheath as compared to the control cultures. Magnification: left panel = 10X, right panel = 40X. (b) Quantitative evaluation: FG1 promotes myelination ****P <0.0001. Error bars represent SEM of two experiments. Myelinating cultures were treated with 100 ng/ml FGF1 for different time periods. Axonal density calculated as pixel for NFL (different FGF1 dosages/control) were 1.17 for 5 ng/ml FGF1, 1.2 for 50 ng/ml FGF1 and 1.06 for 50 ng/ml FGF1. (c) 16 days (12 DIV to 28 DIV) and (d) 6 days (12 DIV to 18 DIV). The myelination was enhanced at day 18 and 24, but unaltered at day 28. ****P <0.0001. Significance of data values was analyzed using T-test. Error bars represent SEM from three independent experiments. The axonal densities (FGF1/control) ranged between 0.98 and 1.02 in the experiments shown in (c) and (d).
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4359505&req=5

Fig5: FGF1 promotes myelination in dissociated spinal cord cultures. Myelinating cultures were treated with different concentrations of FGF1 from 22 DIV to 26 DIV and then stained for myelin (MBP in green) and axons (SMI-31 in red). (a) FGF1 treated cultures showed enhanced levels of MBP+ myelin sheath as compared to the control cultures. Magnification: left panel = 10X, right panel = 40X. (b) Quantitative evaluation: FG1 promotes myelination ****P <0.0001. Error bars represent SEM of two experiments. Myelinating cultures were treated with 100 ng/ml FGF1 for different time periods. Axonal density calculated as pixel for NFL (different FGF1 dosages/control) were 1.17 for 5 ng/ml FGF1, 1.2 for 50 ng/ml FGF1 and 1.06 for 50 ng/ml FGF1. (c) 16 days (12 DIV to 28 DIV) and (d) 6 days (12 DIV to 18 DIV). The myelination was enhanced at day 18 and 24, but unaltered at day 28. ****P <0.0001. Significance of data values was analyzed using T-test. Error bars represent SEM from three independent experiments. The axonal densities (FGF1/control) ranged between 0.98 and 1.02 in the experiments shown in (c) and (d).
Mentions: Three independent conditions were used to assess ability of FGF1 to stimulate myelination in these cultures. First, FGF1 was added for four days after the onset of myelination and this enhanced myelination up to 1.7-fold (p < 0.0001) (Figure 5a and 5b). Second, FGF1 was added before the onset of myelination at day 12 for a total of 16 days. Again, we observed FGF1 enhanced myelination, particularly at 18 and 24 days in vitro (DIV) (Figure 5c). Third, FGF1 was added before the onset of myelination for 6 days (12–18 DIV) and then withdrawn while myelination was still ongoing. Enhanced myelination could already be detected during the initial phase of myelination, was still seen six days after FGF1 was withdrawn and then disappeared thereafter (Figure 5d). This indicates that FGF1 accelerates myelination in this culture system.Figure 5

Bottom Line: We dissected remyelinated, demyelinated active, and demyelinated inactive white matter MS lesions, and compared transcript levels of myelination and inflammation-related genes using quantitative PCR on customized TaqMan Low Density Arrays.In remyelinated lesions, fibroblast growth factor (FGF) 1 was the most abundant of all analyzed myelination-regulating factors, showed a trend towards higher expression as compared to demyelinated lesions and was significantly higher than in control white matter.Two MS tissue blocks comprised lesions with adjacent de- and remyelinated areas and FGF1 expression was higher in the remyelinated rim compared to the demyelinated lesion core.

View Article: PubMed Central - PubMed

Affiliation: Institute of Clinical Neuroimmunology, Ludwig Maximilian University Munich, Marchioninistraße 15, D-81377, Munich, Germany. hema.mohan@ukmuenster.de.

ABSTRACT
Chronic demyelination is a pathological hallmark of multiple sclerosis (MS). Only a minority of MS lesions remyelinates completely. Enhancing remyelination is, therefore, a major aim of future MS therapies. Here we took a novel approach to identify factors that may inhibit or support endogenous remyelination in MS. We dissected remyelinated, demyelinated active, and demyelinated inactive white matter MS lesions, and compared transcript levels of myelination and inflammation-related genes using quantitative PCR on customized TaqMan Low Density Arrays. In remyelinated lesions, fibroblast growth factor (FGF) 1 was the most abundant of all analyzed myelination-regulating factors, showed a trend towards higher expression as compared to demyelinated lesions and was significantly higher than in control white matter. Two MS tissue blocks comprised lesions with adjacent de- and remyelinated areas and FGF1 expression was higher in the remyelinated rim compared to the demyelinated lesion core. In functional experiments, FGF1 accelerated developmental myelination in dissociated mixed cultures and promoted remyelination in slice cultures, whereas it decelerated differentiation of purified primary oligodendrocytes, suggesting that promotion of remyelination by FGF1 is based on an indirect mechanism. The analysis of human astrocyte responses to FGF1 by genome wide expression profiling showed that FGF1 induced the expression of the chemokine CXCL8 and leukemia inhibitory factor, two factors implicated in recruitment of oligodendrocytes and promotion of remyelination. Together, this study presents a transcript profiling of remyelinated MS lesions and identified FGF1 as a promoter of remyelination. Modulation of FGF family members might improve myelin repair in MS.

Show MeSH
Related in: MedlinePlus