Limits...
Angiogenic activity of breast cancer patients' monocytes reverted by combined use of systems modeling and experimental approaches.

Guex N, Crespo I, Bron S, Ifticene-Treboux A, Faes-Van't Hull E, Kharoubi S, Liechti R, Werffeli P, Ibberson M, Majo F, Nicolas M, Laurent J, Garg A, Zaman K, Lehr HA, Stevenson BJ, Rüegg C, Coukos G, Delaloye JF, Xenarios I, Doucey MA - PLoS Comput. Biol. (2015)

Bottom Line: Angiogenesis plays a key role in tumor growth and cancer progression.In silico predicted perturbations were validated experimentally using patient TEM.In conclusion, the inferred TEM regulatory network accurately captured experimental TEM behavior and highlighted crosstalk between specific angiogenic and inflammatory signaling pathways of outstanding importance to control their pro-angiogenic activity.

View Article: PubMed Central - PubMed

Affiliation: The Vital-IT, SIB (Swiss Institute of Bioinformatics), University of Lausanne, Lausanne, Switzerland.

ABSTRACT
Angiogenesis plays a key role in tumor growth and cancer progression. TIE-2-expressing monocytes (TEM) have been reported to critically account for tumor vascularization and growth in mouse tumor experimental models, but the molecular basis of their pro-angiogenic activity are largely unknown. Moreover, differences in the pro-angiogenic activity between blood circulating and tumor infiltrated TEM in human patients has not been established to date, hindering the identification of specific targets for therapeutic intervention. In this work, we investigated these differences and the phenotypic reversal of breast tumor pro-angiogenic TEM to a weak pro-angiogenic phenotype by combining Boolean modelling and experimental approaches. Firstly, we show that in breast cancer patients the pro-angiogenic activity of TEM increased drastically from blood to tumor, suggesting that the tumor microenvironment shapes the highly pro-angiogenic phenotype of TEM. Secondly, we predicted in silico all minimal perturbations transitioning the highly pro-angiogenic phenotype of tumor TEM to the weak pro-angiogenic phenotype of blood TEM and vice versa. In silico predicted perturbations were validated experimentally using patient TEM. In addition, gene expression profiling of TEM transitioned to a weak pro-angiogenic phenotype confirmed that TEM are plastic cells and can be reverted to immunological potent monocytes. Finally, the relapse-free survival analysis showed a statistically significant difference between patients with tumors with high and low expression values for genes encoding transitioning proteins detected in silico and validated on patient TEM. In conclusion, the inferred TEM regulatory network accurately captured experimental TEM behavior and highlighted crosstalk between specific angiogenic and inflammatory signaling pathways of outstanding importance to control their pro-angiogenic activity. Results showed the successful in vitro reversion of such an activity by perturbation of in silico predicted target genes in tumor derived TEM, and indicated that targeting tumor TEM plasticity may constitute a novel valid therapeutic strategy in breast cancer.

Show MeSH

Related in: MedlinePlus

Controlling the pro-angiogenic activity of TEM from breast cancer patients.(A and B)In vivo corneal vascularization assay, as described in Fig. 1A, showing the variations in the pro-angiogenic activity of patient TEM in response to in silico predicted treatments. TIE-2 kinase inhibitor/TGF-β/VEGF treatment decreased tumor TEM pro-angiogenic activity while TNF-α/PlGF/ANG-2 treatment increased the pro-angiogenic activity of blood TEM. Bars are 500 and 250 μm in A and B respectively. Cornea and iris are depicted by double-head and single arrows respectively. Bar graph represents a quantification of the vascular network of the cornea and the iris. (C) Variations of patient blood and tumor TEM secretion profiles in response to TNF-α/PLGF/ANG-2 and TIE-2 kinase inhibitor/TGF-β/VEGF treatments. Angiogenic factors are boxed. No significant variations were detected for IL-4 and TNF-α. (D) Variations of patient blood and tumor TEM expression of TIE-2 and VEGFR-1 in response to the same treatments. Fold increase to isotype control antibody is indicated, similarly as in Table 2. Shown are cumulated data (C, D) or representative results (A and B) of 3 to 5 experiments. Significant variations (* P < 0.05, T test).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4359163&req=5

pcbi.1004050.g006: Controlling the pro-angiogenic activity of TEM from breast cancer patients.(A and B)In vivo corneal vascularization assay, as described in Fig. 1A, showing the variations in the pro-angiogenic activity of patient TEM in response to in silico predicted treatments. TIE-2 kinase inhibitor/TGF-β/VEGF treatment decreased tumor TEM pro-angiogenic activity while TNF-α/PlGF/ANG-2 treatment increased the pro-angiogenic activity of blood TEM. Bars are 500 and 250 μm in A and B respectively. Cornea and iris are depicted by double-head and single arrows respectively. Bar graph represents a quantification of the vascular network of the cornea and the iris. (C) Variations of patient blood and tumor TEM secretion profiles in response to TNF-α/PLGF/ANG-2 and TIE-2 kinase inhibitor/TGF-β/VEGF treatments. Angiogenic factors are boxed. No significant variations were detected for IL-4 and TNF-α. (D) Variations of patient blood and tumor TEM expression of TIE-2 and VEGFR-1 in response to the same treatments. Fold increase to isotype control antibody is indicated, similarly as in Table 2. Shown are cumulated data (C, D) or representative results (A and B) of 3 to 5 experiments. Significant variations (* P < 0.05, T test).

Mentions: We next sought to validate the computationally predicted treatments in TEM isolated from patient breast carcinoma. Tumor TEM were exposed to TIE-2 kinase inhibitor combined with TGF-β and simultaneously engaged their VEGFR-1 using VEGF (alternatively PlGF, Table 4 and Fig. 4). This combined treatment strongly reduced the pro-angiogenic activity of tumor TEM in the mouse cornea vascularization assay (Fig. 6A and B) and decreased the expression of TIE-2 and VEGFR-1 (Fig. 6D). Furthermore, this treatment reduced the secretion of IL-6, IL-8, MMP9, bFGF and VEGF, consistent with a paracrine profile shifted toward a M1-like phenotype and closer to the one of blood TEM (Fig. 6C and 1B). Conversely, TEM from patient blood exposed to the combined treatment of TNF-α/PlGF/ANG-2 increased their pro-angiogenic activity in the mouse cornea vascularization assay (Fig. 6B) and was associated with significantly higher secretion of IL-1β, IL-6, IL-10, MMP9 and VEGF (Fig. 6C) and increased expression of TIE-2 and VEGFR1 (Fig. 6D). These results highlighted the validity of our combined experimental and computational approach to revert the pro-angiogenic phenotype of TEM and revealed, for the first time, that tumor TEM remain plastic cells representing attractive targets for anti-angiogenic therapies.


Angiogenic activity of breast cancer patients' monocytes reverted by combined use of systems modeling and experimental approaches.

Guex N, Crespo I, Bron S, Ifticene-Treboux A, Faes-Van't Hull E, Kharoubi S, Liechti R, Werffeli P, Ibberson M, Majo F, Nicolas M, Laurent J, Garg A, Zaman K, Lehr HA, Stevenson BJ, Rüegg C, Coukos G, Delaloye JF, Xenarios I, Doucey MA - PLoS Comput. Biol. (2015)

Controlling the pro-angiogenic activity of TEM from breast cancer patients.(A and B)In vivo corneal vascularization assay, as described in Fig. 1A, showing the variations in the pro-angiogenic activity of patient TEM in response to in silico predicted treatments. TIE-2 kinase inhibitor/TGF-β/VEGF treatment decreased tumor TEM pro-angiogenic activity while TNF-α/PlGF/ANG-2 treatment increased the pro-angiogenic activity of blood TEM. Bars are 500 and 250 μm in A and B respectively. Cornea and iris are depicted by double-head and single arrows respectively. Bar graph represents a quantification of the vascular network of the cornea and the iris. (C) Variations of patient blood and tumor TEM secretion profiles in response to TNF-α/PLGF/ANG-2 and TIE-2 kinase inhibitor/TGF-β/VEGF treatments. Angiogenic factors are boxed. No significant variations were detected for IL-4 and TNF-α. (D) Variations of patient blood and tumor TEM expression of TIE-2 and VEGFR-1 in response to the same treatments. Fold increase to isotype control antibody is indicated, similarly as in Table 2. Shown are cumulated data (C, D) or representative results (A and B) of 3 to 5 experiments. Significant variations (* P < 0.05, T test).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4359163&req=5

pcbi.1004050.g006: Controlling the pro-angiogenic activity of TEM from breast cancer patients.(A and B)In vivo corneal vascularization assay, as described in Fig. 1A, showing the variations in the pro-angiogenic activity of patient TEM in response to in silico predicted treatments. TIE-2 kinase inhibitor/TGF-β/VEGF treatment decreased tumor TEM pro-angiogenic activity while TNF-α/PlGF/ANG-2 treatment increased the pro-angiogenic activity of blood TEM. Bars are 500 and 250 μm in A and B respectively. Cornea and iris are depicted by double-head and single arrows respectively. Bar graph represents a quantification of the vascular network of the cornea and the iris. (C) Variations of patient blood and tumor TEM secretion profiles in response to TNF-α/PLGF/ANG-2 and TIE-2 kinase inhibitor/TGF-β/VEGF treatments. Angiogenic factors are boxed. No significant variations were detected for IL-4 and TNF-α. (D) Variations of patient blood and tumor TEM expression of TIE-2 and VEGFR-1 in response to the same treatments. Fold increase to isotype control antibody is indicated, similarly as in Table 2. Shown are cumulated data (C, D) or representative results (A and B) of 3 to 5 experiments. Significant variations (* P < 0.05, T test).
Mentions: We next sought to validate the computationally predicted treatments in TEM isolated from patient breast carcinoma. Tumor TEM were exposed to TIE-2 kinase inhibitor combined with TGF-β and simultaneously engaged their VEGFR-1 using VEGF (alternatively PlGF, Table 4 and Fig. 4). This combined treatment strongly reduced the pro-angiogenic activity of tumor TEM in the mouse cornea vascularization assay (Fig. 6A and B) and decreased the expression of TIE-2 and VEGFR-1 (Fig. 6D). Furthermore, this treatment reduced the secretion of IL-6, IL-8, MMP9, bFGF and VEGF, consistent with a paracrine profile shifted toward a M1-like phenotype and closer to the one of blood TEM (Fig. 6C and 1B). Conversely, TEM from patient blood exposed to the combined treatment of TNF-α/PlGF/ANG-2 increased their pro-angiogenic activity in the mouse cornea vascularization assay (Fig. 6B) and was associated with significantly higher secretion of IL-1β, IL-6, IL-10, MMP9 and VEGF (Fig. 6C) and increased expression of TIE-2 and VEGFR1 (Fig. 6D). These results highlighted the validity of our combined experimental and computational approach to revert the pro-angiogenic phenotype of TEM and revealed, for the first time, that tumor TEM remain plastic cells representing attractive targets for anti-angiogenic therapies.

Bottom Line: Angiogenesis plays a key role in tumor growth and cancer progression.In silico predicted perturbations were validated experimentally using patient TEM.In conclusion, the inferred TEM regulatory network accurately captured experimental TEM behavior and highlighted crosstalk between specific angiogenic and inflammatory signaling pathways of outstanding importance to control their pro-angiogenic activity.

View Article: PubMed Central - PubMed

Affiliation: The Vital-IT, SIB (Swiss Institute of Bioinformatics), University of Lausanne, Lausanne, Switzerland.

ABSTRACT
Angiogenesis plays a key role in tumor growth and cancer progression. TIE-2-expressing monocytes (TEM) have been reported to critically account for tumor vascularization and growth in mouse tumor experimental models, but the molecular basis of their pro-angiogenic activity are largely unknown. Moreover, differences in the pro-angiogenic activity between blood circulating and tumor infiltrated TEM in human patients has not been established to date, hindering the identification of specific targets for therapeutic intervention. In this work, we investigated these differences and the phenotypic reversal of breast tumor pro-angiogenic TEM to a weak pro-angiogenic phenotype by combining Boolean modelling and experimental approaches. Firstly, we show that in breast cancer patients the pro-angiogenic activity of TEM increased drastically from blood to tumor, suggesting that the tumor microenvironment shapes the highly pro-angiogenic phenotype of TEM. Secondly, we predicted in silico all minimal perturbations transitioning the highly pro-angiogenic phenotype of tumor TEM to the weak pro-angiogenic phenotype of blood TEM and vice versa. In silico predicted perturbations were validated experimentally using patient TEM. In addition, gene expression profiling of TEM transitioned to a weak pro-angiogenic phenotype confirmed that TEM are plastic cells and can be reverted to immunological potent monocytes. Finally, the relapse-free survival analysis showed a statistically significant difference between patients with tumors with high and low expression values for genes encoding transitioning proteins detected in silico and validated on patient TEM. In conclusion, the inferred TEM regulatory network accurately captured experimental TEM behavior and highlighted crosstalk between specific angiogenic and inflammatory signaling pathways of outstanding importance to control their pro-angiogenic activity. Results showed the successful in vitro reversion of such an activity by perturbation of in silico predicted target genes in tumor derived TEM, and indicated that targeting tumor TEM plasticity may constitute a novel valid therapeutic strategy in breast cancer.

Show MeSH
Related in: MedlinePlus