Limits...
Spot the difference-development of a syndrome based protein microarray for specific serological detection of multiple flavivirus infections in travelers.

Cleton NB, Godeke GJ, Reimerink J, Beersma MF, Doorn HR, Franco L, Goeijenbier M, Jimenez-Clavero MA, Johnson BW, Niedrig M, Papa A, Sambri V, Tami A, Velasco-Salas ZI, Koopmans MP, Reusken CB - PLoS Negl Trop Dis (2015)

Bottom Line: Sera from clinical flavivirus patients were used for primary development of the protein microarray.Results show a high IgG and IgM sensitivity and specificity for individual NS1 antigens, and limited cross reactivity, even within serocomplexes.Based on these data, multiplex NS1-based protein microarray is a promising tool for surveillance and diagnosis of flaviviruses.

View Article: PubMed Central - PubMed

Affiliation: Erasmus Medical Centre, Viroscience Department, Rotterdam, The Netherlands; National Institute for Public Health and Environment, Center for Infectious Diseases Research and Screening, Bilthoven, The Netherlands.

ABSTRACT

Background: The family Flaviviridae, genus Flavivirus, holds many of the world's most prevalent arboviral diseases that are also considered the most important travel related arboviral infections. In most cases, flavivirus diagnosis in travelers is primarily based on serology as viremia is often low and typically has already been reduced to undetectable levels when symptoms set in and patients seek medical attention. Serological differentiation between flaviviruses and the false-positive results caused by vaccination and cross-reactivity among the different species, are problematic for surveillance and diagnostics of flaviviruses. Their partially overlapping geographic distribution and symptoms, combined with increase in travel, and preexisting antibodies due to flavivirus vaccinations, expand the need for rapid and reliable multiplex diagnostic tests to supplement currently used methods.

Goal: We describe the development of a multiplex serological protein microarray using recombinant NS1 proteins for detection of medically important viruses within the genus Flavivirus. Sera from clinical flavivirus patients were used for primary development of the protein microarray.

Results: Results show a high IgG and IgM sensitivity and specificity for individual NS1 antigens, and limited cross reactivity, even within serocomplexes. In addition, the serology based on this array allows for discrimination between infection and vaccination response for JEV vaccine, and no cross-reactivity with TBEV and YFV vaccine induced antibodies when testing for antibodies to other flaviviruses.

Conclusion: Based on these data, multiplex NS1-based protein microarray is a promising tool for surveillance and diagnosis of flaviviruses.

Show MeSH

Related in: MedlinePlus

Heatmap of patient IgG antibody profiles.To visualize the overall cross-reactivity seen in individual serum samples the maximum calculated titer per sample was set at 100% and all other signals were expressed as a percentage of the highest titer and placed in a heatmap. White refers to a titer of 0% in reference to highest calculated titer per serum sample with a sliding scale to red which indicates a titer of 100% comparable to highest titer calculated. The numbers alongside the patient group column correspond to the serum samples shown in Fig. 4A and 4C. The star indicates a group of patients with high titers to multiple DENV NS1 antigens.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4359159&req=5

pntd.0003580.g006: Heatmap of patient IgG antibody profiles.To visualize the overall cross-reactivity seen in individual serum samples the maximum calculated titer per sample was set at 100% and all other signals were expressed as a percentage of the highest titer and placed in a heatmap. White refers to a titer of 0% in reference to highest calculated titer per serum sample with a sliding scale to red which indicates a titer of 100% comparable to highest titer calculated. The numbers alongside the patient group column correspond to the serum samples shown in Fig. 4A and 4C. The star indicates a group of patients with high titers to multiple DENV NS1 antigens.

Mentions: IgG profiles from individual patients were combined into a heatmap (Fig. 6) to confirm grouping according to exposure history. One group of patients (indicated by a star in the heatmap) showed high titers to multiple DENV serotypes. A larger group had highest titers to a single DENV serotype, suggesting serotype specificity of the antibody array results. As most patients were from different regions, the data were stratified for non-endemic (travelers) and multiple DENV endemic countries. This showed a significant difference in titers between groups (p<0.01) for IgG but not for IgM (p = 0.25) titers.


Spot the difference-development of a syndrome based protein microarray for specific serological detection of multiple flavivirus infections in travelers.

Cleton NB, Godeke GJ, Reimerink J, Beersma MF, Doorn HR, Franco L, Goeijenbier M, Jimenez-Clavero MA, Johnson BW, Niedrig M, Papa A, Sambri V, Tami A, Velasco-Salas ZI, Koopmans MP, Reusken CB - PLoS Negl Trop Dis (2015)

Heatmap of patient IgG antibody profiles.To visualize the overall cross-reactivity seen in individual serum samples the maximum calculated titer per sample was set at 100% and all other signals were expressed as a percentage of the highest titer and placed in a heatmap. White refers to a titer of 0% in reference to highest calculated titer per serum sample with a sliding scale to red which indicates a titer of 100% comparable to highest titer calculated. The numbers alongside the patient group column correspond to the serum samples shown in Fig. 4A and 4C. The star indicates a group of patients with high titers to multiple DENV NS1 antigens.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4359159&req=5

pntd.0003580.g006: Heatmap of patient IgG antibody profiles.To visualize the overall cross-reactivity seen in individual serum samples the maximum calculated titer per sample was set at 100% and all other signals were expressed as a percentage of the highest titer and placed in a heatmap. White refers to a titer of 0% in reference to highest calculated titer per serum sample with a sliding scale to red which indicates a titer of 100% comparable to highest titer calculated. The numbers alongside the patient group column correspond to the serum samples shown in Fig. 4A and 4C. The star indicates a group of patients with high titers to multiple DENV NS1 antigens.
Mentions: IgG profiles from individual patients were combined into a heatmap (Fig. 6) to confirm grouping according to exposure history. One group of patients (indicated by a star in the heatmap) showed high titers to multiple DENV serotypes. A larger group had highest titers to a single DENV serotype, suggesting serotype specificity of the antibody array results. As most patients were from different regions, the data were stratified for non-endemic (travelers) and multiple DENV endemic countries. This showed a significant difference in titers between groups (p<0.01) for IgG but not for IgM (p = 0.25) titers.

Bottom Line: Sera from clinical flavivirus patients were used for primary development of the protein microarray.Results show a high IgG and IgM sensitivity and specificity for individual NS1 antigens, and limited cross reactivity, even within serocomplexes.Based on these data, multiplex NS1-based protein microarray is a promising tool for surveillance and diagnosis of flaviviruses.

View Article: PubMed Central - PubMed

Affiliation: Erasmus Medical Centre, Viroscience Department, Rotterdam, The Netherlands; National Institute for Public Health and Environment, Center for Infectious Diseases Research and Screening, Bilthoven, The Netherlands.

ABSTRACT

Background: The family Flaviviridae, genus Flavivirus, holds many of the world's most prevalent arboviral diseases that are also considered the most important travel related arboviral infections. In most cases, flavivirus diagnosis in travelers is primarily based on serology as viremia is often low and typically has already been reduced to undetectable levels when symptoms set in and patients seek medical attention. Serological differentiation between flaviviruses and the false-positive results caused by vaccination and cross-reactivity among the different species, are problematic for surveillance and diagnostics of flaviviruses. Their partially overlapping geographic distribution and symptoms, combined with increase in travel, and preexisting antibodies due to flavivirus vaccinations, expand the need for rapid and reliable multiplex diagnostic tests to supplement currently used methods.

Goal: We describe the development of a multiplex serological protein microarray using recombinant NS1 proteins for detection of medically important viruses within the genus Flavivirus. Sera from clinical flavivirus patients were used for primary development of the protein microarray.

Results: Results show a high IgG and IgM sensitivity and specificity for individual NS1 antigens, and limited cross reactivity, even within serocomplexes. In addition, the serology based on this array allows for discrimination between infection and vaccination response for JEV vaccine, and no cross-reactivity with TBEV and YFV vaccine induced antibodies when testing for antibodies to other flaviviruses.

Conclusion: Based on these data, multiplex NS1-based protein microarray is a promising tool for surveillance and diagnosis of flaviviruses.

Show MeSH
Related in: MedlinePlus