Limits...
Discriminatory components retracing strategy for monitoring the preparation procedure of Chinese patent medicines by fingerprint and chemometric analysis.

Yao S, Zhang J, Wang D, Hou J, Yang W, Da J, Cai L, Yang M, Jiang B, Liu X, Guo DA, Wu W - PLoS ONE (2015)

Bottom Line: As a result, the holistic inconsistencies of ninety-three batches of SKIs were identified and five discriminatory components including emodic acid, gallic acid, caffeic acid, chrysophanol-O-glucoside, and p-coumaroyl-O-galloyl-glucose were labeled as the representative targets to explain the retracing strategy.It was suggested that the production process should be standardized by taking the concentration of the discriminatory components as the diagnostic marker to ensure the stable and consistent quality for multi-batches of products.It is believed that the effective and practical strategy would play a critical role in the guidance of manufacturing and help improve the safety of the final products.

View Article: PubMed Central - PubMed

Affiliation: National Engineering Laboratory for TCM Standardization Technology, Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.

ABSTRACT
Chinese patent medicines (CPM), generally prepared from several traditional Chinese medicines (TCMs) in accordance with specific process, are the typical delivery form of TCMs in Asia. To date, quality control of CPMs has typically focused on the evaluation of the final products using fingerprint technique and multi-components quantification, but rarely on monitoring the whole preparation process, which was considered to be more important to ensure the quality of CPMs. In this study, a novel and effective strategy labeling "retracing" way based on HPLC fingerprint and chemometric analysis was proposed with Shenkang injection (SKI) serving as an example to achieve the quality control of the whole preparation process. The chemical fingerprints were established initially and then analyzed by similarity, principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) to evaluate the quality and to explore discriminatory components. As a result, the holistic inconsistencies of ninety-three batches of SKIs were identified and five discriminatory components including emodic acid, gallic acid, caffeic acid, chrysophanol-O-glucoside, and p-coumaroyl-O-galloyl-glucose were labeled as the representative targets to explain the retracing strategy. Through analysis of the targets variation in the corresponding semi-products (ninety-three batches), intermediates (thirty-three batches), and the raw materials, successively, the origins of the discriminatory components were determined and some crucial influencing factors were proposed including the raw materials, the coextraction temperature, the sterilizing conditions, and so on. Meanwhile, a reference fingerprint was established and subsequently applied to the guidance of manufacturing. It was suggested that the production process should be standardized by taking the concentration of the discriminatory components as the diagnostic marker to ensure the stable and consistent quality for multi-batches of products. It is believed that the effective and practical strategy would play a critical role in the guidance of manufacturing and help improve the safety of the final products.

Show MeSH
Distribution pattern of the discriminatory components among SKIs, semi-products, intermediates, and the raw materials.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4359105&req=5

pone.0121366.g004: Distribution pattern of the discriminatory components among SKIs, semi-products, intermediates, and the raw materials.

Mentions: Fig. 4A plots the content trends of emodic acid in all tested samples. For SKIs (blue line), an obvious tendency was observed that the contents of emodic acid in S1–S46, except S31–S33, were relatively high but with significant variance, while those in S47–S93 were steadily low. Consistently, similar distribution patterns appeared in the ninety-three batches of semi-products (red line) and thirty-three batches of intermediates A (green line), from which it could be inferred that the variations were not produced in sterilizing and mixing procedure. As described in Table 1, emodic acid was undetected in RRR (purple line) but in intermediate A. Thus it was deduced that the significant variations likely originated from the process of coextraction of RRR and SMRR. A study reported that emodic acid was a metabolite of emodin via an oxidation reaction [27], hence the wide distribution of phenolic acid in SMRR probably led to the reaction in the heating extraction procedure. Consequently, the extraction temperature and time should be strictly controlled for the preparation of intermediate A to obtain relatively stable products.


Discriminatory components retracing strategy for monitoring the preparation procedure of Chinese patent medicines by fingerprint and chemometric analysis.

Yao S, Zhang J, Wang D, Hou J, Yang W, Da J, Cai L, Yang M, Jiang B, Liu X, Guo DA, Wu W - PLoS ONE (2015)

Distribution pattern of the discriminatory components among SKIs, semi-products, intermediates, and the raw materials.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4359105&req=5

pone.0121366.g004: Distribution pattern of the discriminatory components among SKIs, semi-products, intermediates, and the raw materials.
Mentions: Fig. 4A plots the content trends of emodic acid in all tested samples. For SKIs (blue line), an obvious tendency was observed that the contents of emodic acid in S1–S46, except S31–S33, were relatively high but with significant variance, while those in S47–S93 were steadily low. Consistently, similar distribution patterns appeared in the ninety-three batches of semi-products (red line) and thirty-three batches of intermediates A (green line), from which it could be inferred that the variations were not produced in sterilizing and mixing procedure. As described in Table 1, emodic acid was undetected in RRR (purple line) but in intermediate A. Thus it was deduced that the significant variations likely originated from the process of coextraction of RRR and SMRR. A study reported that emodic acid was a metabolite of emodin via an oxidation reaction [27], hence the wide distribution of phenolic acid in SMRR probably led to the reaction in the heating extraction procedure. Consequently, the extraction temperature and time should be strictly controlled for the preparation of intermediate A to obtain relatively stable products.

Bottom Line: As a result, the holistic inconsistencies of ninety-three batches of SKIs were identified and five discriminatory components including emodic acid, gallic acid, caffeic acid, chrysophanol-O-glucoside, and p-coumaroyl-O-galloyl-glucose were labeled as the representative targets to explain the retracing strategy.It was suggested that the production process should be standardized by taking the concentration of the discriminatory components as the diagnostic marker to ensure the stable and consistent quality for multi-batches of products.It is believed that the effective and practical strategy would play a critical role in the guidance of manufacturing and help improve the safety of the final products.

View Article: PubMed Central - PubMed

Affiliation: National Engineering Laboratory for TCM Standardization Technology, Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.

ABSTRACT
Chinese patent medicines (CPM), generally prepared from several traditional Chinese medicines (TCMs) in accordance with specific process, are the typical delivery form of TCMs in Asia. To date, quality control of CPMs has typically focused on the evaluation of the final products using fingerprint technique and multi-components quantification, but rarely on monitoring the whole preparation process, which was considered to be more important to ensure the quality of CPMs. In this study, a novel and effective strategy labeling "retracing" way based on HPLC fingerprint and chemometric analysis was proposed with Shenkang injection (SKI) serving as an example to achieve the quality control of the whole preparation process. The chemical fingerprints were established initially and then analyzed by similarity, principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) to evaluate the quality and to explore discriminatory components. As a result, the holistic inconsistencies of ninety-three batches of SKIs were identified and five discriminatory components including emodic acid, gallic acid, caffeic acid, chrysophanol-O-glucoside, and p-coumaroyl-O-galloyl-glucose were labeled as the representative targets to explain the retracing strategy. Through analysis of the targets variation in the corresponding semi-products (ninety-three batches), intermediates (thirty-three batches), and the raw materials, successively, the origins of the discriminatory components were determined and some crucial influencing factors were proposed including the raw materials, the coextraction temperature, the sterilizing conditions, and so on. Meanwhile, a reference fingerprint was established and subsequently applied to the guidance of manufacturing. It was suggested that the production process should be standardized by taking the concentration of the discriminatory components as the diagnostic marker to ensure the stable and consistent quality for multi-batches of products. It is believed that the effective and practical strategy would play a critical role in the guidance of manufacturing and help improve the safety of the final products.

Show MeSH