Limits...
Discriminatory components retracing strategy for monitoring the preparation procedure of Chinese patent medicines by fingerprint and chemometric analysis.

Yao S, Zhang J, Wang D, Hou J, Yang W, Da J, Cai L, Yang M, Jiang B, Liu X, Guo DA, Wu W - PLoS ONE (2015)

Bottom Line: As a result, the holistic inconsistencies of ninety-three batches of SKIs were identified and five discriminatory components including emodic acid, gallic acid, caffeic acid, chrysophanol-O-glucoside, and p-coumaroyl-O-galloyl-glucose were labeled as the representative targets to explain the retracing strategy.It was suggested that the production process should be standardized by taking the concentration of the discriminatory components as the diagnostic marker to ensure the stable and consistent quality for multi-batches of products.It is believed that the effective and practical strategy would play a critical role in the guidance of manufacturing and help improve the safety of the final products.

View Article: PubMed Central - PubMed

Affiliation: National Engineering Laboratory for TCM Standardization Technology, Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.

ABSTRACT
Chinese patent medicines (CPM), generally prepared from several traditional Chinese medicines (TCMs) in accordance with specific process, are the typical delivery form of TCMs in Asia. To date, quality control of CPMs has typically focused on the evaluation of the final products using fingerprint technique and multi-components quantification, but rarely on monitoring the whole preparation process, which was considered to be more important to ensure the quality of CPMs. In this study, a novel and effective strategy labeling "retracing" way based on HPLC fingerprint and chemometric analysis was proposed with Shenkang injection (SKI) serving as an example to achieve the quality control of the whole preparation process. The chemical fingerprints were established initially and then analyzed by similarity, principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) to evaluate the quality and to explore discriminatory components. As a result, the holistic inconsistencies of ninety-three batches of SKIs were identified and five discriminatory components including emodic acid, gallic acid, caffeic acid, chrysophanol-O-glucoside, and p-coumaroyl-O-galloyl-glucose were labeled as the representative targets to explain the retracing strategy. Through analysis of the targets variation in the corresponding semi-products (ninety-three batches), intermediates (thirty-three batches), and the raw materials, successively, the origins of the discriminatory components were determined and some crucial influencing factors were proposed including the raw materials, the coextraction temperature, the sterilizing conditions, and so on. Meanwhile, a reference fingerprint was established and subsequently applied to the guidance of manufacturing. It was suggested that the production process should be standardized by taking the concentration of the discriminatory components as the diagnostic marker to ensure the stable and consistent quality for multi-batches of products. It is believed that the effective and practical strategy would play a critical role in the guidance of manufacturing and help improve the safety of the final products.

Show MeSH
HPLC fingerprints of SKI, TA, TB, RRR, SMRR, AR, and CF.TA, TB, RRR, SMRR, AR, and CF are intermediate A, intermediate B, Radix et Rhizoma Rhei, Radix et Rhizoma Salviae Miltiorrhizae, Radix Astragali, and Flos Carthami, respectively.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4359105&req=5

pone.0121366.g002: HPLC fingerprints of SKI, TA, TB, RRR, SMRR, AR, and CF.TA, TB, RRR, SMRR, AR, and CF are intermediate A, intermediate B, Radix et Rhizoma Rhei, Radix et Rhizoma Salviae Miltiorrhizae, Radix Astragali, and Flos Carthami, respectively.

Mentions: In the study, the chromatographic conditions were optimized, involving column, gradient program, column temperature, flow rate, and so on, in order to obtain a suitable chromatographic separation for as more peaks as possible in a short analysis time. The final results are summarized in Instrumentation section. Since the crude drugs in SKI containing chemical constituents with well UV absorption, the fingerprint was established based on HPLC-UV analysis with the monitoring wavelength at 280 nm. Ninety-three batches of SKIs were analyzed and the typical chromatogram is showed in Fig. 2. The method validation results (S2 Table), with the similarity values over 0.99, indicated that the method was reliable and the sample solution was stable within 24 h.


Discriminatory components retracing strategy for monitoring the preparation procedure of Chinese patent medicines by fingerprint and chemometric analysis.

Yao S, Zhang J, Wang D, Hou J, Yang W, Da J, Cai L, Yang M, Jiang B, Liu X, Guo DA, Wu W - PLoS ONE (2015)

HPLC fingerprints of SKI, TA, TB, RRR, SMRR, AR, and CF.TA, TB, RRR, SMRR, AR, and CF are intermediate A, intermediate B, Radix et Rhizoma Rhei, Radix et Rhizoma Salviae Miltiorrhizae, Radix Astragali, and Flos Carthami, respectively.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4359105&req=5

pone.0121366.g002: HPLC fingerprints of SKI, TA, TB, RRR, SMRR, AR, and CF.TA, TB, RRR, SMRR, AR, and CF are intermediate A, intermediate B, Radix et Rhizoma Rhei, Radix et Rhizoma Salviae Miltiorrhizae, Radix Astragali, and Flos Carthami, respectively.
Mentions: In the study, the chromatographic conditions were optimized, involving column, gradient program, column temperature, flow rate, and so on, in order to obtain a suitable chromatographic separation for as more peaks as possible in a short analysis time. The final results are summarized in Instrumentation section. Since the crude drugs in SKI containing chemical constituents with well UV absorption, the fingerprint was established based on HPLC-UV analysis with the monitoring wavelength at 280 nm. Ninety-three batches of SKIs were analyzed and the typical chromatogram is showed in Fig. 2. The method validation results (S2 Table), with the similarity values over 0.99, indicated that the method was reliable and the sample solution was stable within 24 h.

Bottom Line: As a result, the holistic inconsistencies of ninety-three batches of SKIs were identified and five discriminatory components including emodic acid, gallic acid, caffeic acid, chrysophanol-O-glucoside, and p-coumaroyl-O-galloyl-glucose were labeled as the representative targets to explain the retracing strategy.It was suggested that the production process should be standardized by taking the concentration of the discriminatory components as the diagnostic marker to ensure the stable and consistent quality for multi-batches of products.It is believed that the effective and practical strategy would play a critical role in the guidance of manufacturing and help improve the safety of the final products.

View Article: PubMed Central - PubMed

Affiliation: National Engineering Laboratory for TCM Standardization Technology, Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.

ABSTRACT
Chinese patent medicines (CPM), generally prepared from several traditional Chinese medicines (TCMs) in accordance with specific process, are the typical delivery form of TCMs in Asia. To date, quality control of CPMs has typically focused on the evaluation of the final products using fingerprint technique and multi-components quantification, but rarely on monitoring the whole preparation process, which was considered to be more important to ensure the quality of CPMs. In this study, a novel and effective strategy labeling "retracing" way based on HPLC fingerprint and chemometric analysis was proposed with Shenkang injection (SKI) serving as an example to achieve the quality control of the whole preparation process. The chemical fingerprints were established initially and then analyzed by similarity, principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) to evaluate the quality and to explore discriminatory components. As a result, the holistic inconsistencies of ninety-three batches of SKIs were identified and five discriminatory components including emodic acid, gallic acid, caffeic acid, chrysophanol-O-glucoside, and p-coumaroyl-O-galloyl-glucose were labeled as the representative targets to explain the retracing strategy. Through analysis of the targets variation in the corresponding semi-products (ninety-three batches), intermediates (thirty-three batches), and the raw materials, successively, the origins of the discriminatory components were determined and some crucial influencing factors were proposed including the raw materials, the coextraction temperature, the sterilizing conditions, and so on. Meanwhile, a reference fingerprint was established and subsequently applied to the guidance of manufacturing. It was suggested that the production process should be standardized by taking the concentration of the discriminatory components as the diagnostic marker to ensure the stable and consistent quality for multi-batches of products. It is believed that the effective and practical strategy would play a critical role in the guidance of manufacturing and help improve the safety of the final products.

Show MeSH