Limits...
Discriminatory components retracing strategy for monitoring the preparation procedure of Chinese patent medicines by fingerprint and chemometric analysis.

Yao S, Zhang J, Wang D, Hou J, Yang W, Da J, Cai L, Yang M, Jiang B, Liu X, Guo DA, Wu W - PLoS ONE (2015)

Bottom Line: As a result, the holistic inconsistencies of ninety-three batches of SKIs were identified and five discriminatory components including emodic acid, gallic acid, caffeic acid, chrysophanol-O-glucoside, and p-coumaroyl-O-galloyl-glucose were labeled as the representative targets to explain the retracing strategy.It was suggested that the production process should be standardized by taking the concentration of the discriminatory components as the diagnostic marker to ensure the stable and consistent quality for multi-batches of products.It is believed that the effective and practical strategy would play a critical role in the guidance of manufacturing and help improve the safety of the final products.

View Article: PubMed Central - PubMed

Affiliation: National Engineering Laboratory for TCM Standardization Technology, Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.

ABSTRACT
Chinese patent medicines (CPM), generally prepared from several traditional Chinese medicines (TCMs) in accordance with specific process, are the typical delivery form of TCMs in Asia. To date, quality control of CPMs has typically focused on the evaluation of the final products using fingerprint technique and multi-components quantification, but rarely on monitoring the whole preparation process, which was considered to be more important to ensure the quality of CPMs. In this study, a novel and effective strategy labeling "retracing" way based on HPLC fingerprint and chemometric analysis was proposed with Shenkang injection (SKI) serving as an example to achieve the quality control of the whole preparation process. The chemical fingerprints were established initially and then analyzed by similarity, principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) to evaluate the quality and to explore discriminatory components. As a result, the holistic inconsistencies of ninety-three batches of SKIs were identified and five discriminatory components including emodic acid, gallic acid, caffeic acid, chrysophanol-O-glucoside, and p-coumaroyl-O-galloyl-glucose were labeled as the representative targets to explain the retracing strategy. Through analysis of the targets variation in the corresponding semi-products (ninety-three batches), intermediates (thirty-three batches), and the raw materials, successively, the origins of the discriminatory components were determined and some crucial influencing factors were proposed including the raw materials, the coextraction temperature, the sterilizing conditions, and so on. Meanwhile, a reference fingerprint was established and subsequently applied to the guidance of manufacturing. It was suggested that the production process should be standardized by taking the concentration of the discriminatory components as the diagnostic marker to ensure the stable and consistent quality for multi-batches of products. It is believed that the effective and practical strategy would play a critical role in the guidance of manufacturing and help improve the safety of the final products.

Show MeSH
Workflow of the proposed strategy for monitoring the preparation parameters.RRR, SMRR, AR, and CF are Radix et Rhizoma Rhei, Radix et Rhizoma Salviae Miltiorrhizae, Radix Astragali, and Flos Carthami, respectively.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4359105&req=5

pone.0121366.g001: Workflow of the proposed strategy for monitoring the preparation parameters.RRR, SMRR, AR, and CF are Radix et Rhizoma Rhei, Radix et Rhizoma Salviae Miltiorrhizae, Radix Astragali, and Flos Carthami, respectively.

Mentions: SKI contains four medicinal crude drugs including Radix et Rhizoma Rhei (Dahuang in Chinese, RRR), Radix et Rhizoma Salviae Miltiorrhizae (Danshen in Chinese, SMRR), Radix Astragali (Huangqi in Chinese, AR), and Flos Carthami (Honghua in Chinese, CF). It is used for the treatment of chronic renal failure [17]. As described in Fig. 1, the preparation procedures are as follows [17]: firstly, RRR and SMRR were coextracted to produce intermediate A; AR and CF were coextracted to yield intermediate B. Secondly, the intermediates A and B were mixed to form the semi-products and then subjected to sterilization to produce the final products. As for the bioactive constituents, it was reported that RRR mainly contained sennosides, anthraquinones, stilbenes, and glucose gallates [18], SMRR and CF mainly contained phenolic acids and flavonoids, respectively [19, 20], and AR mainly contained different kinds of isoflavonoids and triterpenoid saponins [21].


Discriminatory components retracing strategy for monitoring the preparation procedure of Chinese patent medicines by fingerprint and chemometric analysis.

Yao S, Zhang J, Wang D, Hou J, Yang W, Da J, Cai L, Yang M, Jiang B, Liu X, Guo DA, Wu W - PLoS ONE (2015)

Workflow of the proposed strategy for monitoring the preparation parameters.RRR, SMRR, AR, and CF are Radix et Rhizoma Rhei, Radix et Rhizoma Salviae Miltiorrhizae, Radix Astragali, and Flos Carthami, respectively.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4359105&req=5

pone.0121366.g001: Workflow of the proposed strategy for monitoring the preparation parameters.RRR, SMRR, AR, and CF are Radix et Rhizoma Rhei, Radix et Rhizoma Salviae Miltiorrhizae, Radix Astragali, and Flos Carthami, respectively.
Mentions: SKI contains four medicinal crude drugs including Radix et Rhizoma Rhei (Dahuang in Chinese, RRR), Radix et Rhizoma Salviae Miltiorrhizae (Danshen in Chinese, SMRR), Radix Astragali (Huangqi in Chinese, AR), and Flos Carthami (Honghua in Chinese, CF). It is used for the treatment of chronic renal failure [17]. As described in Fig. 1, the preparation procedures are as follows [17]: firstly, RRR and SMRR were coextracted to produce intermediate A; AR and CF were coextracted to yield intermediate B. Secondly, the intermediates A and B were mixed to form the semi-products and then subjected to sterilization to produce the final products. As for the bioactive constituents, it was reported that RRR mainly contained sennosides, anthraquinones, stilbenes, and glucose gallates [18], SMRR and CF mainly contained phenolic acids and flavonoids, respectively [19, 20], and AR mainly contained different kinds of isoflavonoids and triterpenoid saponins [21].

Bottom Line: As a result, the holistic inconsistencies of ninety-three batches of SKIs were identified and five discriminatory components including emodic acid, gallic acid, caffeic acid, chrysophanol-O-glucoside, and p-coumaroyl-O-galloyl-glucose were labeled as the representative targets to explain the retracing strategy.It was suggested that the production process should be standardized by taking the concentration of the discriminatory components as the diagnostic marker to ensure the stable and consistent quality for multi-batches of products.It is believed that the effective and practical strategy would play a critical role in the guidance of manufacturing and help improve the safety of the final products.

View Article: PubMed Central - PubMed

Affiliation: National Engineering Laboratory for TCM Standardization Technology, Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.

ABSTRACT
Chinese patent medicines (CPM), generally prepared from several traditional Chinese medicines (TCMs) in accordance with specific process, are the typical delivery form of TCMs in Asia. To date, quality control of CPMs has typically focused on the evaluation of the final products using fingerprint technique and multi-components quantification, but rarely on monitoring the whole preparation process, which was considered to be more important to ensure the quality of CPMs. In this study, a novel and effective strategy labeling "retracing" way based on HPLC fingerprint and chemometric analysis was proposed with Shenkang injection (SKI) serving as an example to achieve the quality control of the whole preparation process. The chemical fingerprints were established initially and then analyzed by similarity, principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) to evaluate the quality and to explore discriminatory components. As a result, the holistic inconsistencies of ninety-three batches of SKIs were identified and five discriminatory components including emodic acid, gallic acid, caffeic acid, chrysophanol-O-glucoside, and p-coumaroyl-O-galloyl-glucose were labeled as the representative targets to explain the retracing strategy. Through analysis of the targets variation in the corresponding semi-products (ninety-three batches), intermediates (thirty-three batches), and the raw materials, successively, the origins of the discriminatory components were determined and some crucial influencing factors were proposed including the raw materials, the coextraction temperature, the sterilizing conditions, and so on. Meanwhile, a reference fingerprint was established and subsequently applied to the guidance of manufacturing. It was suggested that the production process should be standardized by taking the concentration of the discriminatory components as the diagnostic marker to ensure the stable and consistent quality for multi-batches of products. It is believed that the effective and practical strategy would play a critical role in the guidance of manufacturing and help improve the safety of the final products.

Show MeSH