Limits...
Mitochondrial reactive oxygen species regulate adipocyte differentiation of mesenchymal stem cells in hematopoietic stress induced by arabinosylcytosine.

Wang W, Zhang Y, Lu W, Liu K - PLoS ONE (2015)

Bottom Line: ROS levels were detected using the CM-H2DCFDA probe and Mito-SOX dye.The elevated ROS levels induced by Ara-C were caused by both over-generation of mitochondrial ROS and reduction of antioxidant enzymes (Cu/Zn Superoxide dismutase and catalase).Our findings suggest that a mitochondrial-targeted antioxidant could diminish adipocyte differentiation.

View Article: PubMed Central - PubMed

Affiliation: Department of Hematology, Peking University People's Hospital, Beijing, China; Institute of Hematology, Peking University, Beijing, China.

ABSTRACT

Objective: The increase in adipocytes induced by chemotherapeutic drugs may play a negative role in hematopoietic recovery. However, the mechanism underlying adipocyte differentiation of mesenchymal stem cells (MSCs) in hematopoietic stress is still unknown. Hence, the involvement of reactive oxygen species (ROS) in adipocyte differentiation under hematopoietic stress was investigated in vitro and in vivo.

Methods: The roles of cellular ROS in adipogenesis were investigated in vivo through an adipocyte hyperplasia marrow model under hematopoietic stress induced by arabinosylcytosine (Ara-C) and in vitro via adipocyte differentiation of human MSCs. ROS levels were detected using the CM-H2DCFDA probe and Mito-SOX dye. Adipogenesis was evaluated by histopathology and oil red O staining, whereas detection of mRNA levels of antioxidant enzymes and adipogenesis markers was performed using quantitative real-time polymerase chain reaction analysis.

Results: ROS were found to play an important role in regulating adipocyte differentiation of MSCs by activating peroxisome proliferator-activated receptor gamma (PPARγ,) while the antioxidant N-acetyl-L-cysteine acts through ROS to inhibit adipocyte differentiation. The elevated ROS levels induced by Ara-C were caused by both over-generation of mitochondrial ROS and reduction of antioxidant enzymes (Cu/Zn Superoxide dismutase and catalase). Our findings suggest that a mitochondrial-targeted antioxidant could diminish adipocyte differentiation.

Show MeSH

Related in: MedlinePlus

NAC diminishes adipogenesis induced by Ara-C in vivo.(A) BM section of the tibia from four groups on Day 7. Scale bar = 200 μm. (B) Adipocyte counts per mm2 in tibia BM sections. (C) Gene expression of PPARγ and adiponectin in the long bone BM on Day 7. (D) Western blot analysis of PPARγ protein on Day 7 of treatment in the long bone BM. (E) Mean fluorescence intensity of ROS in mouse BM-derived MSCs. ROS was quantified by FACS using the CM-H2DCFDA probe. *P < 0.05.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4359087&req=5

pone.0120629.g002: NAC diminishes adipogenesis induced by Ara-C in vivo.(A) BM section of the tibia from four groups on Day 7. Scale bar = 200 μm. (B) Adipocyte counts per mm2 in tibia BM sections. (C) Gene expression of PPARγ and adiponectin in the long bone BM on Day 7. (D) Western blot analysis of PPARγ protein on Day 7 of treatment in the long bone BM. (E) Mean fluorescence intensity of ROS in mouse BM-derived MSCs. ROS was quantified by FACS using the CM-H2DCFDA probe. *P < 0.05.

Mentions: Our group has previously investigated adipogenesis induced by Ara-C and the effect of PPARγ inhibitor on hematopoietic recovery after chemotherapy [9]. As ROS mediate adipocyte differentiation in vitro and adipocytes in BM are derived from the differentiation of MSCs, whether the antioxidant NAC diminishes adipogenesis induced by Ara-C treatment was further examined in the current study. Compared to the control group, adipocyte hyperplasia and a significant increase in adipocyte counts was observed in the tibias of Ara-C-treated mice, in accordance with the results of our previous study. Furthermore, adipogenesis in tibias following Ara-C treatment was obviously inhibited by NAC (Fig. 2A-B). In addition, in the same samples, over-expression of PPARγ and adiponectin, as measured by qPCR, was suppressed by NAC treatment (Fig. 2C). Meanwhile, the protein level of PPARγ, which was increased by Ara-C treatment, was similarly decreased after NAC exposure (Fig. 2D-E). These data demonstrate that adipogenesis induced by Ara-C can be inhibited by the antioxidant NAC.


Mitochondrial reactive oxygen species regulate adipocyte differentiation of mesenchymal stem cells in hematopoietic stress induced by arabinosylcytosine.

Wang W, Zhang Y, Lu W, Liu K - PLoS ONE (2015)

NAC diminishes adipogenesis induced by Ara-C in vivo.(A) BM section of the tibia from four groups on Day 7. Scale bar = 200 μm. (B) Adipocyte counts per mm2 in tibia BM sections. (C) Gene expression of PPARγ and adiponectin in the long bone BM on Day 7. (D) Western blot analysis of PPARγ protein on Day 7 of treatment in the long bone BM. (E) Mean fluorescence intensity of ROS in mouse BM-derived MSCs. ROS was quantified by FACS using the CM-H2DCFDA probe. *P < 0.05.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4359087&req=5

pone.0120629.g002: NAC diminishes adipogenesis induced by Ara-C in vivo.(A) BM section of the tibia from four groups on Day 7. Scale bar = 200 μm. (B) Adipocyte counts per mm2 in tibia BM sections. (C) Gene expression of PPARγ and adiponectin in the long bone BM on Day 7. (D) Western blot analysis of PPARγ protein on Day 7 of treatment in the long bone BM. (E) Mean fluorescence intensity of ROS in mouse BM-derived MSCs. ROS was quantified by FACS using the CM-H2DCFDA probe. *P < 0.05.
Mentions: Our group has previously investigated adipogenesis induced by Ara-C and the effect of PPARγ inhibitor on hematopoietic recovery after chemotherapy [9]. As ROS mediate adipocyte differentiation in vitro and adipocytes in BM are derived from the differentiation of MSCs, whether the antioxidant NAC diminishes adipogenesis induced by Ara-C treatment was further examined in the current study. Compared to the control group, adipocyte hyperplasia and a significant increase in adipocyte counts was observed in the tibias of Ara-C-treated mice, in accordance with the results of our previous study. Furthermore, adipogenesis in tibias following Ara-C treatment was obviously inhibited by NAC (Fig. 2A-B). In addition, in the same samples, over-expression of PPARγ and adiponectin, as measured by qPCR, was suppressed by NAC treatment (Fig. 2C). Meanwhile, the protein level of PPARγ, which was increased by Ara-C treatment, was similarly decreased after NAC exposure (Fig. 2D-E). These data demonstrate that adipogenesis induced by Ara-C can be inhibited by the antioxidant NAC.

Bottom Line: ROS levels were detected using the CM-H2DCFDA probe and Mito-SOX dye.The elevated ROS levels induced by Ara-C were caused by both over-generation of mitochondrial ROS and reduction of antioxidant enzymes (Cu/Zn Superoxide dismutase and catalase).Our findings suggest that a mitochondrial-targeted antioxidant could diminish adipocyte differentiation.

View Article: PubMed Central - PubMed

Affiliation: Department of Hematology, Peking University People's Hospital, Beijing, China; Institute of Hematology, Peking University, Beijing, China.

ABSTRACT

Objective: The increase in adipocytes induced by chemotherapeutic drugs may play a negative role in hematopoietic recovery. However, the mechanism underlying adipocyte differentiation of mesenchymal stem cells (MSCs) in hematopoietic stress is still unknown. Hence, the involvement of reactive oxygen species (ROS) in adipocyte differentiation under hematopoietic stress was investigated in vitro and in vivo.

Methods: The roles of cellular ROS in adipogenesis were investigated in vivo through an adipocyte hyperplasia marrow model under hematopoietic stress induced by arabinosylcytosine (Ara-C) and in vitro via adipocyte differentiation of human MSCs. ROS levels were detected using the CM-H2DCFDA probe and Mito-SOX dye. Adipogenesis was evaluated by histopathology and oil red O staining, whereas detection of mRNA levels of antioxidant enzymes and adipogenesis markers was performed using quantitative real-time polymerase chain reaction analysis.

Results: ROS were found to play an important role in regulating adipocyte differentiation of MSCs by activating peroxisome proliferator-activated receptor gamma (PPARγ,) while the antioxidant N-acetyl-L-cysteine acts through ROS to inhibit adipocyte differentiation. The elevated ROS levels induced by Ara-C were caused by both over-generation of mitochondrial ROS and reduction of antioxidant enzymes (Cu/Zn Superoxide dismutase and catalase). Our findings suggest that a mitochondrial-targeted antioxidant could diminish adipocyte differentiation.

Show MeSH
Related in: MedlinePlus