Limits...
Adult classical glioblastoma with a BRAF V600E mutation.

Takahashi Y, Akahane T, Sawada T, Ikeda H, Tempaku A, Yamauchi S, Nishihara H, Tanaka S, Nitta K, Ide W, Hashimoto I, Kamada H - World J Surg Oncol (2015)

Bottom Line: The B-Raf proto-oncogene serine/threonine kinase (B-Raf) is a member of the Raf kinase family.BRAF V600E mutation in these cases has been canonically detected using Sanger sequencing or immunohistochemistry but not with next-generation sequencing (NGS).We report here the detection of the BRAF V600E mutation in a patient with c-GBM and describe the patient's clinical course as well as the results of histopathological analysis.

View Article: PubMed Central - PubMed

Affiliation: Department of Neurosurgery, Hokuto Hospital, 7-5, Inada, Obihiro, Hokkaido, 080-0039, Japan. yosinobu@hokuto7.or.jp.

ABSTRACT
The B-Raf proto-oncogene serine/threonine kinase (B-Raf) is a member of the Raf kinase family. The BRAF V600E mutation occurs frequently in certain brain tumors such as pleomorphic xanthoastrocytoma, ganglioglioma, and pilocytic astrocytoma, and less frequently in epithelioid and giant cell glioblastoma. BRAF V600E mutation in these cases has been canonically detected using Sanger sequencing or immunohistochemistry but not with next-generation sequencing (NGS). Moreover, to our knowledge, there is no detailed report of the BRAF V600E mutation in an adult glioblastoma with classical histologic features (c-GBM). Therefore, we performed NGS analysis to determine the mutational status of BRAF of 13 glioblastomas (GBMs) (11 primary and 2 secondary cases) and detected one tumor harboring the BRAF V600E mutation. We report here the detection of the BRAF V600E mutation in a patient with c-GBM and describe the patient's clinical course as well as the results of histopathological analysis.

Show MeSH

Related in: MedlinePlus

Magnetic resonance imaging (MRI) and positron emission tomography (PET). (A) T2-weighted image showing a huge multicystic mass in the right occipitoparietal area with marked surrounding edema and shift of the midline structures to the left side. (B) Each cyst wall and adjacent cortical mass was enhanced with contrast medium. (C) Fluorodeoxyglucose (FDG) PET showing high accumulation in the right occipitoparietal area. (D) Methionine (MET) PET showing high accumulation in the right occipitoparietal area. (E, F) MRI and PET findings at the time of recurrence. (E) Small enhanced mass adjacent to the cavity formed by removal of the tumor. (F) FDG-PET showing no accumulation in the mass. (G) MET-PET showing high accumulation in the mass. (H) MRI 4 years after the first operation.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4358908&req=5

Fig1: Magnetic resonance imaging (MRI) and positron emission tomography (PET). (A) T2-weighted image showing a huge multicystic mass in the right occipitoparietal area with marked surrounding edema and shift of the midline structures to the left side. (B) Each cyst wall and adjacent cortical mass was enhanced with contrast medium. (C) Fluorodeoxyglucose (FDG) PET showing high accumulation in the right occipitoparietal area. (D) Methionine (MET) PET showing high accumulation in the right occipitoparietal area. (E, F) MRI and PET findings at the time of recurrence. (E) Small enhanced mass adjacent to the cavity formed by removal of the tumor. (F) FDG-PET showing no accumulation in the mass. (G) MET-PET showing high accumulation in the mass. (H) MRI 4 years after the first operation.

Mentions: A 49-year-old man was admitted to the hospital complaining of headache, vomiting, and mild left hemiparesis. Magnetic resonance imaging (MRI) showed a huge multicystic mass in the right occipitoparietal area with marked surrounding edema and a shift of the midline structures to the left side (Figure 1A). The cyst wall and adjacent cortical mass were enhanced with contrast medium (Figure 1B). 18F-Fluorodeoxyglucose (FDG) and methionine (MET) positron emission tomography (PET) revealed high accumulation in the right occipitoparietal area (Figure 1C, D).Figure 1


Adult classical glioblastoma with a BRAF V600E mutation.

Takahashi Y, Akahane T, Sawada T, Ikeda H, Tempaku A, Yamauchi S, Nishihara H, Tanaka S, Nitta K, Ide W, Hashimoto I, Kamada H - World J Surg Oncol (2015)

Magnetic resonance imaging (MRI) and positron emission tomography (PET). (A) T2-weighted image showing a huge multicystic mass in the right occipitoparietal area with marked surrounding edema and shift of the midline structures to the left side. (B) Each cyst wall and adjacent cortical mass was enhanced with contrast medium. (C) Fluorodeoxyglucose (FDG) PET showing high accumulation in the right occipitoparietal area. (D) Methionine (MET) PET showing high accumulation in the right occipitoparietal area. (E, F) MRI and PET findings at the time of recurrence. (E) Small enhanced mass adjacent to the cavity formed by removal of the tumor. (F) FDG-PET showing no accumulation in the mass. (G) MET-PET showing high accumulation in the mass. (H) MRI 4 years after the first operation.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4358908&req=5

Fig1: Magnetic resonance imaging (MRI) and positron emission tomography (PET). (A) T2-weighted image showing a huge multicystic mass in the right occipitoparietal area with marked surrounding edema and shift of the midline structures to the left side. (B) Each cyst wall and adjacent cortical mass was enhanced with contrast medium. (C) Fluorodeoxyglucose (FDG) PET showing high accumulation in the right occipitoparietal area. (D) Methionine (MET) PET showing high accumulation in the right occipitoparietal area. (E, F) MRI and PET findings at the time of recurrence. (E) Small enhanced mass adjacent to the cavity formed by removal of the tumor. (F) FDG-PET showing no accumulation in the mass. (G) MET-PET showing high accumulation in the mass. (H) MRI 4 years after the first operation.
Mentions: A 49-year-old man was admitted to the hospital complaining of headache, vomiting, and mild left hemiparesis. Magnetic resonance imaging (MRI) showed a huge multicystic mass in the right occipitoparietal area with marked surrounding edema and a shift of the midline structures to the left side (Figure 1A). The cyst wall and adjacent cortical mass were enhanced with contrast medium (Figure 1B). 18F-Fluorodeoxyglucose (FDG) and methionine (MET) positron emission tomography (PET) revealed high accumulation in the right occipitoparietal area (Figure 1C, D).Figure 1

Bottom Line: The B-Raf proto-oncogene serine/threonine kinase (B-Raf) is a member of the Raf kinase family.BRAF V600E mutation in these cases has been canonically detected using Sanger sequencing or immunohistochemistry but not with next-generation sequencing (NGS).We report here the detection of the BRAF V600E mutation in a patient with c-GBM and describe the patient's clinical course as well as the results of histopathological analysis.

View Article: PubMed Central - PubMed

Affiliation: Department of Neurosurgery, Hokuto Hospital, 7-5, Inada, Obihiro, Hokkaido, 080-0039, Japan. yosinobu@hokuto7.or.jp.

ABSTRACT
The B-Raf proto-oncogene serine/threonine kinase (B-Raf) is a member of the Raf kinase family. The BRAF V600E mutation occurs frequently in certain brain tumors such as pleomorphic xanthoastrocytoma, ganglioglioma, and pilocytic astrocytoma, and less frequently in epithelioid and giant cell glioblastoma. BRAF V600E mutation in these cases has been canonically detected using Sanger sequencing or immunohistochemistry but not with next-generation sequencing (NGS). Moreover, to our knowledge, there is no detailed report of the BRAF V600E mutation in an adult glioblastoma with classical histologic features (c-GBM). Therefore, we performed NGS analysis to determine the mutational status of BRAF of 13 glioblastomas (GBMs) (11 primary and 2 secondary cases) and detected one tumor harboring the BRAF V600E mutation. We report here the detection of the BRAF V600E mutation in a patient with c-GBM and describe the patient's clinical course as well as the results of histopathological analysis.

Show MeSH
Related in: MedlinePlus