Limits...
Temperature dependent mechanical property of PZT film: an investigation by nanoindentation.

Li Y, Feng S, Wu W, Li F - PLoS ONE (2015)

Bottom Line: Its reduce modulus and hardness were calculated by the typical Oliver-Pharr method.Results show that the indentation depth and modulus increase, but the hardness decreases at elevated temperature.The increasing of true modulus is attributed to the reducing of recoverable indentation depth induced by back-switched domains.

View Article: PubMed Central - PubMed

Affiliation: Department of Engineering mechanics, School of Civil Engineering, Wuhan University, Wuhan, China; State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China.

ABSTRACT
Load-depth curves of an unpoled Lead Zirconate Titanate (PZT) film composite as a function of temperature were measured by nanoindentation technique. Its reduce modulus and hardness were calculated by the typical Oliver-Pharr method. Then the true modulus and hardness of the PZT film were assessed by decoupling the influence of substrate using methods proposed by Zhou et al. and Korsunsky et al., respectively. Results show that the indentation depth and modulus increase, but the hardness decreases at elevated temperature. The increasing of indentation depth and the decreasing of hardness are thought to be caused by the decreasing of the critical stress needed to excite dislocation initiation at high temperature. The increasing of true modulus is attributed to the reducing of recoverable indentation depth induced by back-switched domains. The influence of residual stress on the indentation behavior of PZT film composite was also investigated by measuring its load-depth curves with pre-load strains.

No MeSH data available.


Related in: MedlinePlus

Reduce modulus vs. contact depth curves (A), and hardness vs. contact depth curves of PZT film composite measured at different temperature (B).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4358891&req=5

pone.0116478.g005: Reduce modulus vs. contact depth curves (A), and hardness vs. contact depth curves of PZT film composite measured at different temperature (B).

Mentions: Fig. 5A and 5B show the calculated reduce modulus and hardness at different temperature, respectively. It can be seen that with the increasing of temperature, the reduce modulus gradually increases but the hardness decreases at the same contact depth. When the temperature keeps constant, both the measured reduce modulus and hardness first increase and then decease with the increasing of the contact depth.


Temperature dependent mechanical property of PZT film: an investigation by nanoindentation.

Li Y, Feng S, Wu W, Li F - PLoS ONE (2015)

Reduce modulus vs. contact depth curves (A), and hardness vs. contact depth curves of PZT film composite measured at different temperature (B).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4358891&req=5

pone.0116478.g005: Reduce modulus vs. contact depth curves (A), and hardness vs. contact depth curves of PZT film composite measured at different temperature (B).
Mentions: Fig. 5A and 5B show the calculated reduce modulus and hardness at different temperature, respectively. It can be seen that with the increasing of temperature, the reduce modulus gradually increases but the hardness decreases at the same contact depth. When the temperature keeps constant, both the measured reduce modulus and hardness first increase and then decease with the increasing of the contact depth.

Bottom Line: Its reduce modulus and hardness were calculated by the typical Oliver-Pharr method.Results show that the indentation depth and modulus increase, but the hardness decreases at elevated temperature.The increasing of true modulus is attributed to the reducing of recoverable indentation depth induced by back-switched domains.

View Article: PubMed Central - PubMed

Affiliation: Department of Engineering mechanics, School of Civil Engineering, Wuhan University, Wuhan, China; State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China.

ABSTRACT
Load-depth curves of an unpoled Lead Zirconate Titanate (PZT) film composite as a function of temperature were measured by nanoindentation technique. Its reduce modulus and hardness were calculated by the typical Oliver-Pharr method. Then the true modulus and hardness of the PZT film were assessed by decoupling the influence of substrate using methods proposed by Zhou et al. and Korsunsky et al., respectively. Results show that the indentation depth and modulus increase, but the hardness decreases at elevated temperature. The increasing of indentation depth and the decreasing of hardness are thought to be caused by the decreasing of the critical stress needed to excite dislocation initiation at high temperature. The increasing of true modulus is attributed to the reducing of recoverable indentation depth induced by back-switched domains. The influence of residual stress on the indentation behavior of PZT film composite was also investigated by measuring its load-depth curves with pre-load strains.

No MeSH data available.


Related in: MedlinePlus