Limits...
Characterization and expression profiling of glutathione S-transferases in the diamondback moth, Plutella xylostella (L.).

You Y, Xie M, Ren N, Cheng X, Li J, Ma X, Zou M, Vasseur L, Gurr GM, You M - BMC Genomics (2015)

Bottom Line: Delta, Epsilon and Omega GSTs were numerically superior with 5 genes for each of the subclasses.The resulting phylogenetic tree showed that the P. xylostella GSTs were all clustered into Lepidoptera-specific branches.The diversified features and expression patterns of the GSTs are inferred to be associated with the capacity of this species to develop resistance to a wide range of pesticides and biological toxins.

View Article: PubMed Central - PubMed

Affiliation: Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. fzyouyc@gmail.com.

ABSTRACT

Background: Glutathione S-transferases (GSTs) are multifunctional detoxification enzymes that play important roles in insects. The completion of several insect genome projects has enabled the identification and characterization of GST genes over recent years. This study presents a genome-wide investigation of the diamondback moth (DBM), Plutella xylostella, a species in which the GSTs are of special importance because this pest is highly resistant to many insecticides.

Results: A total of 22 putative cytosolic GSTs were identified from a published P. xylostella genome and grouped into 6 subclasses (with two unclassified). Delta, Epsilon and Omega GSTs were numerically superior with 5 genes for each of the subclasses. The resulting phylogenetic tree showed that the P. xylostella GSTs were all clustered into Lepidoptera-specific branches. Intron sites and phases as well as GSH binding sites were strongly conserved within each of the subclasses in the GSTs of P. xylostella. Transcriptome-, RNA-seq- and qRT-PCR-based analyses showed that the GST genes were developmental stage- and strain-specifically expressed. Most of the highly expressed genes in insecticide resistant strains were also predominantly expressed in the Malpighian tubules, midgut or epidermis.

Conclusions: To date, this is the most comprehensive study on genome-wide identification, characterization and expression profiling of the GST family in P. xylostella. The diversified features and expression patterns of the GSTs are inferred to be associated with the capacity of this species to develop resistance to a wide range of pesticides and biological toxins. Our findings provide a base for functional research on specific GST genes, a better understanding of the evolution of insecticide resistance, and strategies for more sustainable management of the pest.

Show MeSH

Related in: MedlinePlus

Unrooted phylogenetic tree of the cytosolic GSTs in nine targeted insect species. The tree was constructed using neighbor-joining approach with MEGA 5.10 [35] on the basis of Poisson correction amino acid model and pairwise deletion of gaps. Species acronym (Aa: Aedes aegypti; Ag: Anopheles gambiae; Dm: Drosophila melanogaster (Diptera); Bm: Bombyx mori; Pp: Papilio polytes; Dp: Danaus plexippus; Px: Plutella xylostella (Lepidoptera); Am: Apis mellifera; Nv: Nasonia vitripennis (Hymenoptea)) was used right before each of the GST genes.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4358871&req=5

Fig1: Unrooted phylogenetic tree of the cytosolic GSTs in nine targeted insect species. The tree was constructed using neighbor-joining approach with MEGA 5.10 [35] on the basis of Poisson correction amino acid model and pairwise deletion of gaps. Species acronym (Aa: Aedes aegypti; Ag: Anopheles gambiae; Dm: Drosophila melanogaster (Diptera); Bm: Bombyx mori; Pp: Papilio polytes; Dp: Danaus plexippus; Px: Plutella xylostella (Lepidoptera); Am: Apis mellifera; Nv: Nasonia vitripennis (Hymenoptea)) was used right before each of the GST genes.

Mentions: The phylogenetic tree illustrated that the seven subclasses were well clustered into their relevant phylogenetic branches (FigureĀ 1). The unclassified subclass diverged from the Delta subclass, suggesting that they may have similar functions. In all the subclasses, the P. xylostella GSTs were all clustered into the Lepidoptera-specific branches. Within a specific subclass, the same genes in different species were first clustered into an upper branch within the phylogenetic tree, suggesting that specific GSTs in different species might have same or similar functions [33,34].Figure 1


Characterization and expression profiling of glutathione S-transferases in the diamondback moth, Plutella xylostella (L.).

You Y, Xie M, Ren N, Cheng X, Li J, Ma X, Zou M, Vasseur L, Gurr GM, You M - BMC Genomics (2015)

Unrooted phylogenetic tree of the cytosolic GSTs in nine targeted insect species. The tree was constructed using neighbor-joining approach with MEGA 5.10 [35] on the basis of Poisson correction amino acid model and pairwise deletion of gaps. Species acronym (Aa: Aedes aegypti; Ag: Anopheles gambiae; Dm: Drosophila melanogaster (Diptera); Bm: Bombyx mori; Pp: Papilio polytes; Dp: Danaus plexippus; Px: Plutella xylostella (Lepidoptera); Am: Apis mellifera; Nv: Nasonia vitripennis (Hymenoptea)) was used right before each of the GST genes.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4358871&req=5

Fig1: Unrooted phylogenetic tree of the cytosolic GSTs in nine targeted insect species. The tree was constructed using neighbor-joining approach with MEGA 5.10 [35] on the basis of Poisson correction amino acid model and pairwise deletion of gaps. Species acronym (Aa: Aedes aegypti; Ag: Anopheles gambiae; Dm: Drosophila melanogaster (Diptera); Bm: Bombyx mori; Pp: Papilio polytes; Dp: Danaus plexippus; Px: Plutella xylostella (Lepidoptera); Am: Apis mellifera; Nv: Nasonia vitripennis (Hymenoptea)) was used right before each of the GST genes.
Mentions: The phylogenetic tree illustrated that the seven subclasses were well clustered into their relevant phylogenetic branches (FigureĀ 1). The unclassified subclass diverged from the Delta subclass, suggesting that they may have similar functions. In all the subclasses, the P. xylostella GSTs were all clustered into the Lepidoptera-specific branches. Within a specific subclass, the same genes in different species were first clustered into an upper branch within the phylogenetic tree, suggesting that specific GSTs in different species might have same or similar functions [33,34].Figure 1

Bottom Line: Delta, Epsilon and Omega GSTs were numerically superior with 5 genes for each of the subclasses.The resulting phylogenetic tree showed that the P. xylostella GSTs were all clustered into Lepidoptera-specific branches.The diversified features and expression patterns of the GSTs are inferred to be associated with the capacity of this species to develop resistance to a wide range of pesticides and biological toxins.

View Article: PubMed Central - PubMed

Affiliation: Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. fzyouyc@gmail.com.

ABSTRACT

Background: Glutathione S-transferases (GSTs) are multifunctional detoxification enzymes that play important roles in insects. The completion of several insect genome projects has enabled the identification and characterization of GST genes over recent years. This study presents a genome-wide investigation of the diamondback moth (DBM), Plutella xylostella, a species in which the GSTs are of special importance because this pest is highly resistant to many insecticides.

Results: A total of 22 putative cytosolic GSTs were identified from a published P. xylostella genome and grouped into 6 subclasses (with two unclassified). Delta, Epsilon and Omega GSTs were numerically superior with 5 genes for each of the subclasses. The resulting phylogenetic tree showed that the P. xylostella GSTs were all clustered into Lepidoptera-specific branches. Intron sites and phases as well as GSH binding sites were strongly conserved within each of the subclasses in the GSTs of P. xylostella. Transcriptome-, RNA-seq- and qRT-PCR-based analyses showed that the GST genes were developmental stage- and strain-specifically expressed. Most of the highly expressed genes in insecticide resistant strains were also predominantly expressed in the Malpighian tubules, midgut or epidermis.

Conclusions: To date, this is the most comprehensive study on genome-wide identification, characterization and expression profiling of the GST family in P. xylostella. The diversified features and expression patterns of the GSTs are inferred to be associated with the capacity of this species to develop resistance to a wide range of pesticides and biological toxins. Our findings provide a base for functional research on specific GST genes, a better understanding of the evolution of insecticide resistance, and strategies for more sustainable management of the pest.

Show MeSH
Related in: MedlinePlus