Limits...
Conditioned media from adipose stromal cells limit lipopolysaccharide-induced lung injury, endothelial hyperpermeability and apoptosis.

Lu H, Poirier C, Cook T, Traktuev DO, Merfeld-Clauss S, Lease B, Petrache I, March KL, Bogatcheva NV - J Transl Med (2015)

Bottom Line: ASC-CM markedly reduced LPS-induced histopathologic changes of lung, protein extravasation into BALF, and suppressed the secretion of proinflammatory cytokines TNFα and IL6.ASC-CM exposure reduced the percentage of endothelial cells expressing ICAM-1, and suppressed TNFα-induced expression of E-selectin and cleavage of caspase-3.ASC-CM reduced the endothelial level of pro-apoptotic protein Bim, but did not affect the level of Bcl-2, Bad, or Bad phosphorylation.

View Article: PubMed Central - PubMed

Affiliation: Division of Cardiology, Indiana University, Indianapolis, IN, USA. honlu@iu.edu.

ABSTRACT

Background: Acute Respiratory Distress Syndrome (ARDS) is a condition that contributes to morbidity and mortality of critically ill patients. We investigated whether factors secreted by adipose stromal cells (ASC) into conditioned media (ASC-CM) will effectively decrease lung injury in the model of lipopolysaccharide (LPS)-induced ARDS.

Methods: To assess the effect of ASC-CM on ARDS indices, intravenous delivery of ASC and ASC-CM to C57Bl/6 mice was carried out 4 h after LPS oropharyngeal aspiration; Evans Blue Dye (EBD) was injected intravenously 1 h prior to animal sacrifice (48 h post-LPS). Lungs were either fixed for histopathology, or used to extract bronchoalveolar lavage fluid (BALF) or EBD. To assess the effect of ASC-CM on endothelial barrier function and apoptosis, human pulmonary artery endothelial cells were treated with ASC-CM for 48-72 h.

Results: ASC-CM markedly reduced LPS-induced histopathologic changes of lung, protein extravasation into BALF, and suppressed the secretion of proinflammatory cytokines TNFα and IL6. White Blood Cells (WBC) from BALF of LPS-challenged mice receiving ASC-CM had decreased reactive oxygen species (ROS) generation compared to WBC from LPS-challenged mice receiving control media injection. Treatment of pulmonary endothelial monolayers with ASC-CM significantly suppressed H2O2-induced leakage of FITC dextran and changes in transendothelial resistance, as well as gap formation in endothelial monolayer. ASC-CM exposure reduced the percentage of endothelial cells expressing ICAM-1, and suppressed TNFα-induced expression of E-selectin and cleavage of caspase-3. ASC-CM reduced the endothelial level of pro-apoptotic protein Bim, but did not affect the level of Bcl-2, Bad, or Bad phosphorylation.

Conclusions: Factors secreted by ASC efficiently reduce ARDS indices, endothelial barrier hyperpermeability, and activation of pro-inflammatory and pro-apoptotic pathways in endothelium.

Show MeSH

Related in: MedlinePlus

Administration of ASC/ASC-CM is scheduled at the onset of ARDS. A. Timeline of the in vivo study design. B. Body temperature measured in mice receiving saline (black) or LPS (grey) via oropharyngeal aspiration (N = 3-4 per group). First time point of the day was recorded at 8 a.m. Black lines indicate periods of dark. C. Total WBC (T, dark grey) and neutrophil (N, white) count in BALF of mice receiving saline or LPS (N = 3 per group). BALF was collected 4 h post-saline/LPS administration. T-test with Welch’s correction was used to assess the differences between analyzed groups.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4358867&req=5

Fig2: Administration of ASC/ASC-CM is scheduled at the onset of ARDS. A. Timeline of the in vivo study design. B. Body temperature measured in mice receiving saline (black) or LPS (grey) via oropharyngeal aspiration (N = 3-4 per group). First time point of the day was recorded at 8 a.m. Black lines indicate periods of dark. C. Total WBC (T, dark grey) and neutrophil (N, white) count in BALF of mice receiving saline or LPS (N = 3 per group). BALF was collected 4 h post-saline/LPS administration. T-test with Welch’s correction was used to assess the differences between analyzed groups.

Mentions: LPS or saline were delivered into lungs through oropharyngeal aspiration (Figure 2A). Intravenous ASC, ASC-CM or control media injections were performed 4 h after LPS delivery. This protocol was designed to schedule the ASC administration concurrently with the onset of ARDS, identified by peak of hypothermia at 4 h following LPS administration (Figure 2B) and by the first presence of neutrophil infiltration in BALF (Figure 2C).Figure 2


Conditioned media from adipose stromal cells limit lipopolysaccharide-induced lung injury, endothelial hyperpermeability and apoptosis.

Lu H, Poirier C, Cook T, Traktuev DO, Merfeld-Clauss S, Lease B, Petrache I, March KL, Bogatcheva NV - J Transl Med (2015)

Administration of ASC/ASC-CM is scheduled at the onset of ARDS. A. Timeline of the in vivo study design. B. Body temperature measured in mice receiving saline (black) or LPS (grey) via oropharyngeal aspiration (N = 3-4 per group). First time point of the day was recorded at 8 a.m. Black lines indicate periods of dark. C. Total WBC (T, dark grey) and neutrophil (N, white) count in BALF of mice receiving saline or LPS (N = 3 per group). BALF was collected 4 h post-saline/LPS administration. T-test with Welch’s correction was used to assess the differences between analyzed groups.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4358867&req=5

Fig2: Administration of ASC/ASC-CM is scheduled at the onset of ARDS. A. Timeline of the in vivo study design. B. Body temperature measured in mice receiving saline (black) or LPS (grey) via oropharyngeal aspiration (N = 3-4 per group). First time point of the day was recorded at 8 a.m. Black lines indicate periods of dark. C. Total WBC (T, dark grey) and neutrophil (N, white) count in BALF of mice receiving saline or LPS (N = 3 per group). BALF was collected 4 h post-saline/LPS administration. T-test with Welch’s correction was used to assess the differences between analyzed groups.
Mentions: LPS or saline were delivered into lungs through oropharyngeal aspiration (Figure 2A). Intravenous ASC, ASC-CM or control media injections were performed 4 h after LPS delivery. This protocol was designed to schedule the ASC administration concurrently with the onset of ARDS, identified by peak of hypothermia at 4 h following LPS administration (Figure 2B) and by the first presence of neutrophil infiltration in BALF (Figure 2C).Figure 2

Bottom Line: ASC-CM markedly reduced LPS-induced histopathologic changes of lung, protein extravasation into BALF, and suppressed the secretion of proinflammatory cytokines TNFα and IL6.ASC-CM exposure reduced the percentage of endothelial cells expressing ICAM-1, and suppressed TNFα-induced expression of E-selectin and cleavage of caspase-3.ASC-CM reduced the endothelial level of pro-apoptotic protein Bim, but did not affect the level of Bcl-2, Bad, or Bad phosphorylation.

View Article: PubMed Central - PubMed

Affiliation: Division of Cardiology, Indiana University, Indianapolis, IN, USA. honlu@iu.edu.

ABSTRACT

Background: Acute Respiratory Distress Syndrome (ARDS) is a condition that contributes to morbidity and mortality of critically ill patients. We investigated whether factors secreted by adipose stromal cells (ASC) into conditioned media (ASC-CM) will effectively decrease lung injury in the model of lipopolysaccharide (LPS)-induced ARDS.

Methods: To assess the effect of ASC-CM on ARDS indices, intravenous delivery of ASC and ASC-CM to C57Bl/6 mice was carried out 4 h after LPS oropharyngeal aspiration; Evans Blue Dye (EBD) was injected intravenously 1 h prior to animal sacrifice (48 h post-LPS). Lungs were either fixed for histopathology, or used to extract bronchoalveolar lavage fluid (BALF) or EBD. To assess the effect of ASC-CM on endothelial barrier function and apoptosis, human pulmonary artery endothelial cells were treated with ASC-CM for 48-72 h.

Results: ASC-CM markedly reduced LPS-induced histopathologic changes of lung, protein extravasation into BALF, and suppressed the secretion of proinflammatory cytokines TNFα and IL6. White Blood Cells (WBC) from BALF of LPS-challenged mice receiving ASC-CM had decreased reactive oxygen species (ROS) generation compared to WBC from LPS-challenged mice receiving control media injection. Treatment of pulmonary endothelial monolayers with ASC-CM significantly suppressed H2O2-induced leakage of FITC dextran and changes in transendothelial resistance, as well as gap formation in endothelial monolayer. ASC-CM exposure reduced the percentage of endothelial cells expressing ICAM-1, and suppressed TNFα-induced expression of E-selectin and cleavage of caspase-3. ASC-CM reduced the endothelial level of pro-apoptotic protein Bim, but did not affect the level of Bcl-2, Bad, or Bad phosphorylation.

Conclusions: Factors secreted by ASC efficiently reduce ARDS indices, endothelial barrier hyperpermeability, and activation of pro-inflammatory and pro-apoptotic pathways in endothelium.

Show MeSH
Related in: MedlinePlus