Limits...
Comparative evaluation of shaping ability of two nickel-titanium rotary systems using cone beam computed tomography.

Celikten B, Uzuntas CF, Kursun S, Orhan AI, Tufenkci P, Orhan K, Demiralp KÖ - BMC Oral Health (2015)

Bottom Line: Significant differences were found between apical and coronal levels for both systems (p < 0.05) in canal transportation.In comparing the systems, similar values were found at each level, without significant difference (p > 0.05) in terms of canal curvature and volume.Voxel sizes did not affect the measurements on canal volume, curvature or transportation; no significant difference was found between the 0.100- and 0.125-mm(3) voxel sizes (p > 0.05).

View Article: PubMed Central - PubMed

Affiliation: Faculty of Dentistry, Department of Endodontics, Ankara University, Besevler, 06560, Ankara, Turkey. berkancelikten@yahoo.com.tr.

ABSTRACT

Background: We evaluated and compared the effects of different NiTi rotary systems--ProTaper Next and New One Shape--on the volume of dentin removed, canal transportation, and canal curvature in extracted human teeth using CBCT scanning with different voxel sizes.

Methods: Fifty extracted human maxillary first molars with mesiobuccal canal curvature (25-35°) were used. Specimens were instrumented with the ProTaper Next or New One Shape. Pre- and post-instrumentation scans were performed to compare transportation at the levels of 2, 5, and 8 mm and volumes with two different voxel sizes (0.125-and 0.100-mm(3)) using 3D CBCT images. This study evaluated and compare the volume of dentin removed, canal transportation, and canal curvature. Differences according to instrumentation and voxel sizes were assessed using the Mann-Whitney U-test and the Wilcoxon signed-rank test.

Results: Significant differences were found between apical and coronal levels for both systems (p < 0.05) in canal transportation. In comparing the systems, similar values were found at each level, without significant difference (p > 0.05) in terms of canal curvature and volume. Voxel sizes did not affect the measurements on canal volume, curvature or transportation; no significant difference was found between the 0.100- and 0.125-mm(3) voxel sizes (p > 0.05).

Conclusions: Both instrumentation systems produced similar canal transportation and volume changes. The two voxel resolutions also showed similar results, however a 0.125-mm(3) voxel size can be recommend for a flat panel CBCT scanner with lower exposure dose.

No MeSH data available.


Related in: MedlinePlus

Three-dimensionally using the 3D Invivo software (ver. 5.1.2., Anatomage, San Jose, CA). a,b. 3D reconstruction of tooth, c. subtracted root canal, d. The volume of the root canal was measured.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4358850&req=5

Fig4: Three-dimensionally using the 3D Invivo software (ver. 5.1.2., Anatomage, San Jose, CA). a,b. 3D reconstruction of tooth, c. subtracted root canal, d. The volume of the root canal was measured.

Mentions: The volume of the mesiobuccal canal was measured before and after instrumentation using the 3D Invivo software. After obtaining axial images from the CBCT data, they were exported in DICOM file format with a 1024 × 1024 matrix and imported into the In-vivo software. 3D surface representations were prepared from the DICOM images. By making the cement and dentin translucent and layering these data, the root canal was observed three-dimensionally (Figure 4). The root canal volume of each tooth was calculated using this software. The software allows the user to “sculpt out” the desired volume from the 3D structure, and, by adjusting the brightness and opacity values, to remove ‘unwanted’ voxels before calculating the final root canal volume.Figure 4


Comparative evaluation of shaping ability of two nickel-titanium rotary systems using cone beam computed tomography.

Celikten B, Uzuntas CF, Kursun S, Orhan AI, Tufenkci P, Orhan K, Demiralp KÖ - BMC Oral Health (2015)

Three-dimensionally using the 3D Invivo software (ver. 5.1.2., Anatomage, San Jose, CA). a,b. 3D reconstruction of tooth, c. subtracted root canal, d. The volume of the root canal was measured.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4358850&req=5

Fig4: Three-dimensionally using the 3D Invivo software (ver. 5.1.2., Anatomage, San Jose, CA). a,b. 3D reconstruction of tooth, c. subtracted root canal, d. The volume of the root canal was measured.
Mentions: The volume of the mesiobuccal canal was measured before and after instrumentation using the 3D Invivo software. After obtaining axial images from the CBCT data, they were exported in DICOM file format with a 1024 × 1024 matrix and imported into the In-vivo software. 3D surface representations were prepared from the DICOM images. By making the cement and dentin translucent and layering these data, the root canal was observed three-dimensionally (Figure 4). The root canal volume of each tooth was calculated using this software. The software allows the user to “sculpt out” the desired volume from the 3D structure, and, by adjusting the brightness and opacity values, to remove ‘unwanted’ voxels before calculating the final root canal volume.Figure 4

Bottom Line: Significant differences were found between apical and coronal levels for both systems (p < 0.05) in canal transportation.In comparing the systems, similar values were found at each level, without significant difference (p > 0.05) in terms of canal curvature and volume.Voxel sizes did not affect the measurements on canal volume, curvature or transportation; no significant difference was found between the 0.100- and 0.125-mm(3) voxel sizes (p > 0.05).

View Article: PubMed Central - PubMed

Affiliation: Faculty of Dentistry, Department of Endodontics, Ankara University, Besevler, 06560, Ankara, Turkey. berkancelikten@yahoo.com.tr.

ABSTRACT

Background: We evaluated and compared the effects of different NiTi rotary systems--ProTaper Next and New One Shape--on the volume of dentin removed, canal transportation, and canal curvature in extracted human teeth using CBCT scanning with different voxel sizes.

Methods: Fifty extracted human maxillary first molars with mesiobuccal canal curvature (25-35°) were used. Specimens were instrumented with the ProTaper Next or New One Shape. Pre- and post-instrumentation scans were performed to compare transportation at the levels of 2, 5, and 8 mm and volumes with two different voxel sizes (0.125-and 0.100-mm(3)) using 3D CBCT images. This study evaluated and compare the volume of dentin removed, canal transportation, and canal curvature. Differences according to instrumentation and voxel sizes were assessed using the Mann-Whitney U-test and the Wilcoxon signed-rank test.

Results: Significant differences were found between apical and coronal levels for both systems (p < 0.05) in canal transportation. In comparing the systems, similar values were found at each level, without significant difference (p > 0.05) in terms of canal curvature and volume. Voxel sizes did not affect the measurements on canal volume, curvature or transportation; no significant difference was found between the 0.100- and 0.125-mm(3) voxel sizes (p > 0.05).

Conclusions: Both instrumentation systems produced similar canal transportation and volume changes. The two voxel resolutions also showed similar results, however a 0.125-mm(3) voxel size can be recommend for a flat panel CBCT scanner with lower exposure dose.

No MeSH data available.


Related in: MedlinePlus