Limits...
Adaptive Mesh Expansion Model (AMEM) for liver segmentation from CT image.

Wang X, Yang J, Ai D, Zheng Y, Tang S, Wang Y - PLoS ONE (2015)

Bottom Line: The triangular facet of the DSM is adaptively decomposed into smaller triangular components, which can significantly improve the segmentation accuracy of the irregularly sharp corners of the liver.Experiments demonstrate that the proposed AMEM algorithm is effective and robust and thus outperforms six other up-to-date algorithms.Moreover, AMEM can achieve a mean overlap error of 6.8% and a mean volume difference of 2.7%, whereas the average symmetric surface distance and the root mean square symmetric surface distance can reach 1.3 mm and 2.7 mm, respectively.

View Article: PubMed Central - PubMed

Affiliation: Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Electronics, Beijing Institute of Technology, Beijing 100081, China.

ABSTRACT
This study proposes a novel adaptive mesh expansion model (AMEM) for liver segmentation from computed tomography images. The virtual deformable simplex model (DSM) is introduced to represent the mesh, in which the motion of each vertex can be easily manipulated. The balloon, edge, and gradient forces are combined with the binary image to construct the external force of the deformable model, which can rapidly drive the DSM to approach the target liver boundaries. Moreover, tangential and normal forces are combined with the gradient image to control the internal force, such that the DSM degree of smoothness can be precisely controlled. The triangular facet of the DSM is adaptively decomposed into smaller triangular components, which can significantly improve the segmentation accuracy of the irregularly sharp corners of the liver. The proposed method is evaluated on the basis of different criteria applied to 10 clinical data sets. Experiments demonstrate that the proposed AMEM algorithm is effective and robust and thus outperforms six other up-to-date algorithms. Moreover, AMEM can achieve a mean overlap error of 6.8% and a mean volume difference of 2.7%, whereas the average symmetric surface distance and the root mean square symmetric surface distance can reach 1.3 mm and 2.7 mm, respectively.

Show MeSH
Relationship between simplex mesh and virtual triangle mesh.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4358832&req=5

pone.0118064.g003: Relationship between simplex mesh and virtual triangle mesh.

Mentions: Initialization of AMEM. The mesh of the proposed AMEM is composed of a vertex set {pi}, and each vertex is connected to three neighbors. Each vertex on the surface of AMEM is at the gravity center of a virtual triangle facet (dashed line), as shown in Fig. 3. The mesh of the AMEM is constructed as a dual triangle surface. The AMEM guarantees that more than three vertices are present for each facet of the surface. In addition, only three connected neighboring vertices are observed at the vertex on the surface.


Adaptive Mesh Expansion Model (AMEM) for liver segmentation from CT image.

Wang X, Yang J, Ai D, Zheng Y, Tang S, Wang Y - PLoS ONE (2015)

Relationship between simplex mesh and virtual triangle mesh.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4358832&req=5

pone.0118064.g003: Relationship between simplex mesh and virtual triangle mesh.
Mentions: Initialization of AMEM. The mesh of the proposed AMEM is composed of a vertex set {pi}, and each vertex is connected to three neighbors. Each vertex on the surface of AMEM is at the gravity center of a virtual triangle facet (dashed line), as shown in Fig. 3. The mesh of the AMEM is constructed as a dual triangle surface. The AMEM guarantees that more than three vertices are present for each facet of the surface. In addition, only three connected neighboring vertices are observed at the vertex on the surface.

Bottom Line: The triangular facet of the DSM is adaptively decomposed into smaller triangular components, which can significantly improve the segmentation accuracy of the irregularly sharp corners of the liver.Experiments demonstrate that the proposed AMEM algorithm is effective and robust and thus outperforms six other up-to-date algorithms.Moreover, AMEM can achieve a mean overlap error of 6.8% and a mean volume difference of 2.7%, whereas the average symmetric surface distance and the root mean square symmetric surface distance can reach 1.3 mm and 2.7 mm, respectively.

View Article: PubMed Central - PubMed

Affiliation: Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Electronics, Beijing Institute of Technology, Beijing 100081, China.

ABSTRACT
This study proposes a novel adaptive mesh expansion model (AMEM) for liver segmentation from computed tomography images. The virtual deformable simplex model (DSM) is introduced to represent the mesh, in which the motion of each vertex can be easily manipulated. The balloon, edge, and gradient forces are combined with the binary image to construct the external force of the deformable model, which can rapidly drive the DSM to approach the target liver boundaries. Moreover, tangential and normal forces are combined with the gradient image to control the internal force, such that the DSM degree of smoothness can be precisely controlled. The triangular facet of the DSM is adaptively decomposed into smaller triangular components, which can significantly improve the segmentation accuracy of the irregularly sharp corners of the liver. The proposed method is evaluated on the basis of different criteria applied to 10 clinical data sets. Experiments demonstrate that the proposed AMEM algorithm is effective and robust and thus outperforms six other up-to-date algorithms. Moreover, AMEM can achieve a mean overlap error of 6.8% and a mean volume difference of 2.7%, whereas the average symmetric surface distance and the root mean square symmetric surface distance can reach 1.3 mm and 2.7 mm, respectively.

Show MeSH