Limits...
Meta-analysis of studies using suppression subtractive hybridization and microarrays to investigate the effects of environmental stress on gene transcription in oysters.

Anderson K, Taylor DA, Thompson EL, Melwani AR, Nair SV, Raftos DA - PLoS ONE (2015)

Bottom Line: To address this shortfall, we conducted a meta-analysis of 14 studies that investigated the effects of different environmental stressors on gene expression in oysters.We found that the expression of over 400 genes in a range of oyster species changed significantly after exposure to environmental stress.In light of these findings, we put forward a consensus model of sub-cellular stress responses in oysters.

View Article: PubMed Central - PubMed

Affiliation: Sydney Institute of Marine Science, Chowder Bay, NSW, Australia; Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia.

ABSTRACT
Many microarray and suppression subtractive hybridization (SSH) studies have analyzed the effects of environmental stress on gene transcription in marine species. However, there have been no unifying analyses of these data to identify common stress response pathways. To address this shortfall, we conducted a meta-analysis of 14 studies that investigated the effects of different environmental stressors on gene expression in oysters. The stressors tested included chemical contamination, hypoxia and infection, as well as extremes of temperature, pH and turbidity. We found that the expression of over 400 genes in a range of oyster species changed significantly after exposure to environmental stress. A repeating pattern was evident in these transcriptional responses, regardless of the type of stress applied. Many of the genes that responded to environmental stress encoded proteins involved in translation and protein processing (including molecular chaperones), the mitochondrial electron transport chain, anti-oxidant activity and the cytoskeleton. In light of these findings, we put forward a consensus model of sub-cellular stress responses in oysters.

Show MeSH

Related in: MedlinePlus

The top ten genes whose expression was affected by the greatest number of environmental stressors.Genes are listed in ranked order from most frequently affected to least frequently affected. Shaded boxes represent significantly altered gene expression in response to different stressors.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4358831&req=5

pone.0118839.g004: The top ten genes whose expression was affected by the greatest number of environmental stressors.Genes are listed in ranked order from most frequently affected to least frequently affected. Shaded boxes represent significantly altered gene expression in response to different stressors.

Mentions: None of the 586 individual genes identified in this analysis was found to be differentially expressed in all 10 of the stress treatments analysed (5 different types of infectious agents, two temperature extremes, two types of contaminants, and hypoxia) (Fig. 4). Actin β was the most frequently affected gene. It was differentially expressed in all treatments except “pesticide/herbicide”. Cytochrome oxidase subunit 1 (CO1) expression was effected by eight out of the 10 stressors. Commonly affected genes such as actin and CO1 were relatively rare. Only 4% of the 586 genes in this analysis were differentially expressed in more than 6 of the treatments, and the expression of 60% of genes was affected by just one of the 10 stress treatments.


Meta-analysis of studies using suppression subtractive hybridization and microarrays to investigate the effects of environmental stress on gene transcription in oysters.

Anderson K, Taylor DA, Thompson EL, Melwani AR, Nair SV, Raftos DA - PLoS ONE (2015)

The top ten genes whose expression was affected by the greatest number of environmental stressors.Genes are listed in ranked order from most frequently affected to least frequently affected. Shaded boxes represent significantly altered gene expression in response to different stressors.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4358831&req=5

pone.0118839.g004: The top ten genes whose expression was affected by the greatest number of environmental stressors.Genes are listed in ranked order from most frequently affected to least frequently affected. Shaded boxes represent significantly altered gene expression in response to different stressors.
Mentions: None of the 586 individual genes identified in this analysis was found to be differentially expressed in all 10 of the stress treatments analysed (5 different types of infectious agents, two temperature extremes, two types of contaminants, and hypoxia) (Fig. 4). Actin β was the most frequently affected gene. It was differentially expressed in all treatments except “pesticide/herbicide”. Cytochrome oxidase subunit 1 (CO1) expression was effected by eight out of the 10 stressors. Commonly affected genes such as actin and CO1 were relatively rare. Only 4% of the 586 genes in this analysis were differentially expressed in more than 6 of the treatments, and the expression of 60% of genes was affected by just one of the 10 stress treatments.

Bottom Line: To address this shortfall, we conducted a meta-analysis of 14 studies that investigated the effects of different environmental stressors on gene expression in oysters.We found that the expression of over 400 genes in a range of oyster species changed significantly after exposure to environmental stress.In light of these findings, we put forward a consensus model of sub-cellular stress responses in oysters.

View Article: PubMed Central - PubMed

Affiliation: Sydney Institute of Marine Science, Chowder Bay, NSW, Australia; Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia.

ABSTRACT
Many microarray and suppression subtractive hybridization (SSH) studies have analyzed the effects of environmental stress on gene transcription in marine species. However, there have been no unifying analyses of these data to identify common stress response pathways. To address this shortfall, we conducted a meta-analysis of 14 studies that investigated the effects of different environmental stressors on gene expression in oysters. The stressors tested included chemical contamination, hypoxia and infection, as well as extremes of temperature, pH and turbidity. We found that the expression of over 400 genes in a range of oyster species changed significantly after exposure to environmental stress. A repeating pattern was evident in these transcriptional responses, regardless of the type of stress applied. Many of the genes that responded to environmental stress encoded proteins involved in translation and protein processing (including molecular chaperones), the mitochondrial electron transport chain, anti-oxidant activity and the cytoskeleton. In light of these findings, we put forward a consensus model of sub-cellular stress responses in oysters.

Show MeSH
Related in: MedlinePlus