Limits...
Molecular Screening of Blast Resistance Genes in Rice using SSR Markers.

Singh AK, Singh PK, Arya M, Singh NK, Singh US - Plant Pathol. J. (2015)

Bottom Line: It had been proved that using resistant rice varieties would be the most effective way to control this disease.Seven accessions IC337593, IC346002, IC346004, IC346813, IC356117, IC356422 and IC383441 had maximum eight blast resistance gene, while FR13B, Hourakani, Kala Rata 1-24, Lemont, Brown Gora, IR87756-20-2-2-3, IC282418, IC356419, PKSLGR-1 and PKSLGR-39 had seven blast resistance genes.Out of 192 accessions only 17 accessions harboured 7 to 8 blast resistance genes.

View Article: PubMed Central - PubMed

Affiliation: Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi-221005, India.

ABSTRACT
Rice Blast is the most devastating disease causing major yield losses in every year worldwide. It had been proved that using resistant rice varieties would be the most effective way to control this disease. Molecular screening and genetic diversities of major rice blast resistance genes were determined in 192 rice germplasm accessions using simple sequence repeat (SSR) markers. The genetic frequencies of the 10 major rice blast resistance genes varied from 19.79% to 54.69%. Seven accessions IC337593, IC346002, IC346004, IC346813, IC356117, IC356422 and IC383441 had maximum eight blast resistance gene, while FR13B, Hourakani, Kala Rata 1-24, Lemont, Brown Gora, IR87756-20-2-2-3, IC282418, IC356419, PKSLGR-1 and PKSLGR-39 had seven blast resistance genes. Twenty accessions possessed six genes, 36 accessions had five genes, 41 accessions had four genes, 38 accessions had three genes, 26 accessions had two genes, 13 accessions had single R gene and only one accession IC438644 does not possess any one blast resistant gene. Out of 192 accessions only 17 accessions harboured 7 to 8 blast resistance genes.

No MeSH data available.


Related in: MedlinePlus

(A) Agarose gel electrophoretic pattern of some selected rice germplasm accessions generated by using SSR markers (1) RM 541, (2) RM 224, (3) RM 21, (4) RM 527, (5) RM 208, where M is 50 bp DNA size marker, C is check variety and numbers 1–192 represent rice germplasm accessions as described in Table 2.(B) Agarose gel electrophoretic pattern of some selected rice germplasm accessions generated by using SSR markers (6) RM 247, (7) RM 72, (8) RM 259, (9) RM 246, (10) RM 206, where M is 50 bp DNA size marker, C is check variety and numbers 1–192 represent rice germplasm accessions as described in Table 2.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4356601&req=5

f1-ppj-31-12: (A) Agarose gel electrophoretic pattern of some selected rice germplasm accessions generated by using SSR markers (1) RM 541, (2) RM 224, (3) RM 21, (4) RM 527, (5) RM 208, where M is 50 bp DNA size marker, C is check variety and numbers 1–192 represent rice germplasm accessions as described in Table 2.(B) Agarose gel electrophoretic pattern of some selected rice germplasm accessions generated by using SSR markers (6) RM 247, (7) RM 72, (8) RM 259, (9) RM 246, (10) RM 206, where M is 50 bp DNA size marker, C is check variety and numbers 1–192 represent rice germplasm accessions as described in Table 2.

Mentions: The results of genotypic screening of 192 accessions for the presence or absence of 10 major rice blast resistance genes using SSR markers are presented in Table 2 and electrophoresis pattern of each SSR marker linked to blast resistant gene with few accessions are shown in Fig. 1A&B. The germplasms PB-1460 for Pi-9, Pi-1, Pi-5(t), Piz-5, Pi-b, Pi-ta; IR-64 for Pi-33, Pi27(t) and Tetep for Pitp(t), Pi-kh were used as gene differential lines. Estimation of PCR results for 10 blast resistance genes viz. Piz-5, Pi-9, Pitp(t), Pi-1, Pi-5(t), Pi-33, Pi-b, Pi27(t), Pi-kh and Pi-ta were determined by visualization of amplicons on near 216 bp, 170 bp, 120 bp, 140 bp, 147 bp, 160 bp, 170 bp, 150 bp, 130 bp and 126 bp of positive fragments, respectively. The genetic frequencies of the 10 major rice blast resistance genes were ranged from 19.79% to 54.69%. Seventy three accessions containing at least five positive bands of the 10 rice blast resistance markers. The blast resistance gene Piz-5 was widely distributed in 54.69% accessions followed by Pi-9 in 52.60%, Pitp(t) in 47.92%, Pi-1 in 44.27%, Pi-5(t) in 40.63%, Pi-33 in 40.10%, Pib in 39.06%, Pi-27(t) in 33.85%, Pik-h in 27.08% and Pi-ta in only 19.79% accessions. Seven accessions IC337593, IC346002, IC346004, IC346813, IC356117, IC356422 and IC383441 had maximum eight blast resistance gene, while FR13B, Hourakani, Kala Rata 1–24, Lemont, Brown Gora, IR87756-20-2-2-3, IC282418, IC356419, PKSLGR-1 and PKSLGR-39 possessed seven blast resistance genes, and 20 accessions had six genes, 36 accessions had five genes, 41 accessions had four genes, 38 accessions had three genes, 26 accessions had two genes, 13 accessions had single R gene and only one accession IC438644 does not possess any one blast resistant gene.


Molecular Screening of Blast Resistance Genes in Rice using SSR Markers.

Singh AK, Singh PK, Arya M, Singh NK, Singh US - Plant Pathol. J. (2015)

(A) Agarose gel electrophoretic pattern of some selected rice germplasm accessions generated by using SSR markers (1) RM 541, (2) RM 224, (3) RM 21, (4) RM 527, (5) RM 208, where M is 50 bp DNA size marker, C is check variety and numbers 1–192 represent rice germplasm accessions as described in Table 2.(B) Agarose gel electrophoretic pattern of some selected rice germplasm accessions generated by using SSR markers (6) RM 247, (7) RM 72, (8) RM 259, (9) RM 246, (10) RM 206, where M is 50 bp DNA size marker, C is check variety and numbers 1–192 represent rice germplasm accessions as described in Table 2.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4356601&req=5

f1-ppj-31-12: (A) Agarose gel electrophoretic pattern of some selected rice germplasm accessions generated by using SSR markers (1) RM 541, (2) RM 224, (3) RM 21, (4) RM 527, (5) RM 208, where M is 50 bp DNA size marker, C is check variety and numbers 1–192 represent rice germplasm accessions as described in Table 2.(B) Agarose gel electrophoretic pattern of some selected rice germplasm accessions generated by using SSR markers (6) RM 247, (7) RM 72, (8) RM 259, (9) RM 246, (10) RM 206, where M is 50 bp DNA size marker, C is check variety and numbers 1–192 represent rice germplasm accessions as described in Table 2.
Mentions: The results of genotypic screening of 192 accessions for the presence or absence of 10 major rice blast resistance genes using SSR markers are presented in Table 2 and electrophoresis pattern of each SSR marker linked to blast resistant gene with few accessions are shown in Fig. 1A&B. The germplasms PB-1460 for Pi-9, Pi-1, Pi-5(t), Piz-5, Pi-b, Pi-ta; IR-64 for Pi-33, Pi27(t) and Tetep for Pitp(t), Pi-kh were used as gene differential lines. Estimation of PCR results for 10 blast resistance genes viz. Piz-5, Pi-9, Pitp(t), Pi-1, Pi-5(t), Pi-33, Pi-b, Pi27(t), Pi-kh and Pi-ta were determined by visualization of amplicons on near 216 bp, 170 bp, 120 bp, 140 bp, 147 bp, 160 bp, 170 bp, 150 bp, 130 bp and 126 bp of positive fragments, respectively. The genetic frequencies of the 10 major rice blast resistance genes were ranged from 19.79% to 54.69%. Seventy three accessions containing at least five positive bands of the 10 rice blast resistance markers. The blast resistance gene Piz-5 was widely distributed in 54.69% accessions followed by Pi-9 in 52.60%, Pitp(t) in 47.92%, Pi-1 in 44.27%, Pi-5(t) in 40.63%, Pi-33 in 40.10%, Pib in 39.06%, Pi-27(t) in 33.85%, Pik-h in 27.08% and Pi-ta in only 19.79% accessions. Seven accessions IC337593, IC346002, IC346004, IC346813, IC356117, IC356422 and IC383441 had maximum eight blast resistance gene, while FR13B, Hourakani, Kala Rata 1–24, Lemont, Brown Gora, IR87756-20-2-2-3, IC282418, IC356419, PKSLGR-1 and PKSLGR-39 possessed seven blast resistance genes, and 20 accessions had six genes, 36 accessions had five genes, 41 accessions had four genes, 38 accessions had three genes, 26 accessions had two genes, 13 accessions had single R gene and only one accession IC438644 does not possess any one blast resistant gene.

Bottom Line: It had been proved that using resistant rice varieties would be the most effective way to control this disease.Seven accessions IC337593, IC346002, IC346004, IC346813, IC356117, IC356422 and IC383441 had maximum eight blast resistance gene, while FR13B, Hourakani, Kala Rata 1-24, Lemont, Brown Gora, IR87756-20-2-2-3, IC282418, IC356419, PKSLGR-1 and PKSLGR-39 had seven blast resistance genes.Out of 192 accessions only 17 accessions harboured 7 to 8 blast resistance genes.

View Article: PubMed Central - PubMed

Affiliation: Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi-221005, India.

ABSTRACT
Rice Blast is the most devastating disease causing major yield losses in every year worldwide. It had been proved that using resistant rice varieties would be the most effective way to control this disease. Molecular screening and genetic diversities of major rice blast resistance genes were determined in 192 rice germplasm accessions using simple sequence repeat (SSR) markers. The genetic frequencies of the 10 major rice blast resistance genes varied from 19.79% to 54.69%. Seven accessions IC337593, IC346002, IC346004, IC346813, IC356117, IC356422 and IC383441 had maximum eight blast resistance gene, while FR13B, Hourakani, Kala Rata 1-24, Lemont, Brown Gora, IR87756-20-2-2-3, IC282418, IC356419, PKSLGR-1 and PKSLGR-39 had seven blast resistance genes. Twenty accessions possessed six genes, 36 accessions had five genes, 41 accessions had four genes, 38 accessions had three genes, 26 accessions had two genes, 13 accessions had single R gene and only one accession IC438644 does not possess any one blast resistant gene. Out of 192 accessions only 17 accessions harboured 7 to 8 blast resistance genes.

No MeSH data available.


Related in: MedlinePlus