Limits...
Electrifying microbes for the production of chemicals.

Tremblay PL, Zhang T - Front Microbiol (2015)

Bottom Line: MES is a process in which electroautotrophic microbes use electrical current as electron source to reduce CO2 to multicarbon organics.The net outcome is that renewable energy is stored in the covalent bonds of organic compounds synthesized from greenhouse gas.This review will discuss the future of MES and the challenges that lie ahead for its development into a mature technology.

View Article: PubMed Central - PubMed

Affiliation: Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm Denmark.

ABSTRACT
Powering microbes with electrical energy to produce valuable chemicals such as biofuels has recently gained traction as a biosustainable strategy to reduce our dependence on oil. Microbial electrosynthesis (MES) is one of the bioelectrochemical approaches developed in the last decade that could have critical impact on the current methods of chemical synthesis. MES is a process in which electroautotrophic microbes use electrical current as electron source to reduce CO2 to multicarbon organics. Electricity necessary for MES can be harvested from renewable resources such as solar energy, wind turbine, or wastewater treatment processes. The net outcome is that renewable energy is stored in the covalent bonds of organic compounds synthesized from greenhouse gas. This review will discuss the future of MES and the challenges that lie ahead for its development into a mature technology.

No MeSH data available.


Related in: MedlinePlus

Possible extracellular electron transfer mechanisms from the cathode to the microbial catalyst. Indirect electron transfer via (i) an exogenous shuttle or (ii) a shuttle released/excreted by the microbial catalyst. (iii) Direct electron transfer via bacterial outer surface components such as c-type cytochromes or pili. SO is oxidized electron shuttle and SR is reduced electron shuttle.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4356085&req=5

Figure 2: Possible extracellular electron transfer mechanisms from the cathode to the microbial catalyst. Indirect electron transfer via (i) an exogenous shuttle or (ii) a shuttle released/excreted by the microbial catalyst. (iii) Direct electron transfer via bacterial outer surface components such as c-type cytochromes or pili. SO is oxidized electron shuttle and SR is reduced electron shuttle.

Mentions: Understanding the electron transfer mechanisms involved in MES could lead to major breakthroughs in the effort to increase the electron transfer rate between the cathode and the microbial catalyst. Electrons can either be transferred directly or indirectly via a shuttle (Patil et al., 2012; Figure 2). H2, formate, Fe(II) and ammonia have all been reported to function as redox mediator in MES systems (Lovley and Nevin, 2013). H2 has been the most prevalent (Table 1) since it requires only that the cathode in the MES reactor is poised at a lower potential than –0.41 V (vs. SHE). Under this condition, significant quantities of H2 are generated from the electrons coming from the cathode and the protons migrating from the anodic chamber. However, employing H2 as a redox mediator for MES is not optimal because its low solubility might cause energy losses.


Electrifying microbes for the production of chemicals.

Tremblay PL, Zhang T - Front Microbiol (2015)

Possible extracellular electron transfer mechanisms from the cathode to the microbial catalyst. Indirect electron transfer via (i) an exogenous shuttle or (ii) a shuttle released/excreted by the microbial catalyst. (iii) Direct electron transfer via bacterial outer surface components such as c-type cytochromes or pili. SO is oxidized electron shuttle and SR is reduced electron shuttle.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4356085&req=5

Figure 2: Possible extracellular electron transfer mechanisms from the cathode to the microbial catalyst. Indirect electron transfer via (i) an exogenous shuttle or (ii) a shuttle released/excreted by the microbial catalyst. (iii) Direct electron transfer via bacterial outer surface components such as c-type cytochromes or pili. SO is oxidized electron shuttle and SR is reduced electron shuttle.
Mentions: Understanding the electron transfer mechanisms involved in MES could lead to major breakthroughs in the effort to increase the electron transfer rate between the cathode and the microbial catalyst. Electrons can either be transferred directly or indirectly via a shuttle (Patil et al., 2012; Figure 2). H2, formate, Fe(II) and ammonia have all been reported to function as redox mediator in MES systems (Lovley and Nevin, 2013). H2 has been the most prevalent (Table 1) since it requires only that the cathode in the MES reactor is poised at a lower potential than –0.41 V (vs. SHE). Under this condition, significant quantities of H2 are generated from the electrons coming from the cathode and the protons migrating from the anodic chamber. However, employing H2 as a redox mediator for MES is not optimal because its low solubility might cause energy losses.

Bottom Line: MES is a process in which electroautotrophic microbes use electrical current as electron source to reduce CO2 to multicarbon organics.The net outcome is that renewable energy is stored in the covalent bonds of organic compounds synthesized from greenhouse gas.This review will discuss the future of MES and the challenges that lie ahead for its development into a mature technology.

View Article: PubMed Central - PubMed

Affiliation: Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm Denmark.

ABSTRACT
Powering microbes with electrical energy to produce valuable chemicals such as biofuels has recently gained traction as a biosustainable strategy to reduce our dependence on oil. Microbial electrosynthesis (MES) is one of the bioelectrochemical approaches developed in the last decade that could have critical impact on the current methods of chemical synthesis. MES is a process in which electroautotrophic microbes use electrical current as electron source to reduce CO2 to multicarbon organics. Electricity necessary for MES can be harvested from renewable resources such as solar energy, wind turbine, or wastewater treatment processes. The net outcome is that renewable energy is stored in the covalent bonds of organic compounds synthesized from greenhouse gas. This review will discuss the future of MES and the challenges that lie ahead for its development into a mature technology.

No MeSH data available.


Related in: MedlinePlus