Limits...
Electrifying microbes for the production of chemicals.

Tremblay PL, Zhang T - Front Microbiol (2015)

Bottom Line: MES is a process in which electroautotrophic microbes use electrical current as electron source to reduce CO2 to multicarbon organics.The net outcome is that renewable energy is stored in the covalent bonds of organic compounds synthesized from greenhouse gas.This review will discuss the future of MES and the challenges that lie ahead for its development into a mature technology.

View Article: PubMed Central - PubMed

Affiliation: Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm Denmark.

ABSTRACT
Powering microbes with electrical energy to produce valuable chemicals such as biofuels has recently gained traction as a biosustainable strategy to reduce our dependence on oil. Microbial electrosynthesis (MES) is one of the bioelectrochemical approaches developed in the last decade that could have critical impact on the current methods of chemical synthesis. MES is a process in which electroautotrophic microbes use electrical current as electron source to reduce CO2 to multicarbon organics. Electricity necessary for MES can be harvested from renewable resources such as solar energy, wind turbine, or wastewater treatment processes. The net outcome is that renewable energy is stored in the covalent bonds of organic compounds synthesized from greenhouse gas. This review will discuss the future of MES and the challenges that lie ahead for its development into a mature technology.

No MeSH data available.


Related in: MedlinePlus

Principle and flexibility of MES. (i) MES can be coupled with different renewable energy sources such as wind and solar to produce a wide range of chemical commodities. MES can also be coupled to environment-friendly anodic processes such as (ii) sulfide oxidation and (iii) wastewaters treatment.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4356085&req=5

Figure 1: Principle and flexibility of MES. (i) MES can be coupled with different renewable energy sources such as wind and solar to produce a wide range of chemical commodities. MES can also be coupled to environment-friendly anodic processes such as (ii) sulfide oxidation and (iii) wastewaters treatment.

Mentions: Microbial electrosynthesis (MES) happens when a microbial catalyst reduces CO2 into multicarbon chemical commodities with electrons derived from the cathode of a bioelectrochemical system designed primarily to perform biological reductive reactions (rBES; Rabaey and Rozendal, 2010; Rabaey et al., 2011; Lovley, 2012; Lovley and Nevin, 2013; Wang and Ren, 2013; Hallenbeck et al., 2014; Rosenbaum and Franks, 2014; Figure 1). rBES-driven processes also include electrofermentation, electrorespiration, and electromethanogenesis. Electrofermentation occurs when electrons coming from a cathode are supplied to a fermentative microbial catalyst shifting the fermentation balance toward the production of more reduced products (Rabaey and Rozendal, 2010; Kracke and Krömer, 2014). In the case of electrorespiration, a terminal electron acceptor such as fumarate is reduced by a respiratory microbial catalyst with electrons coming from a cathode (Park et al., 1999; Rabaey and Rozendal, 2010). Electromethanogenesis has similarities with MES since CO2 is the feedstock, but in this case CO2 will be reduced to methane by a methanogenic microbial catalyst using electrons derived from a cathode (Cheng et al., 2009; Villano et al., 2010; Kobayashi et al., 2013).


Electrifying microbes for the production of chemicals.

Tremblay PL, Zhang T - Front Microbiol (2015)

Principle and flexibility of MES. (i) MES can be coupled with different renewable energy sources such as wind and solar to produce a wide range of chemical commodities. MES can also be coupled to environment-friendly anodic processes such as (ii) sulfide oxidation and (iii) wastewaters treatment.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4356085&req=5

Figure 1: Principle and flexibility of MES. (i) MES can be coupled with different renewable energy sources such as wind and solar to produce a wide range of chemical commodities. MES can also be coupled to environment-friendly anodic processes such as (ii) sulfide oxidation and (iii) wastewaters treatment.
Mentions: Microbial electrosynthesis (MES) happens when a microbial catalyst reduces CO2 into multicarbon chemical commodities with electrons derived from the cathode of a bioelectrochemical system designed primarily to perform biological reductive reactions (rBES; Rabaey and Rozendal, 2010; Rabaey et al., 2011; Lovley, 2012; Lovley and Nevin, 2013; Wang and Ren, 2013; Hallenbeck et al., 2014; Rosenbaum and Franks, 2014; Figure 1). rBES-driven processes also include electrofermentation, electrorespiration, and electromethanogenesis. Electrofermentation occurs when electrons coming from a cathode are supplied to a fermentative microbial catalyst shifting the fermentation balance toward the production of more reduced products (Rabaey and Rozendal, 2010; Kracke and Krömer, 2014). In the case of electrorespiration, a terminal electron acceptor such as fumarate is reduced by a respiratory microbial catalyst with electrons coming from a cathode (Park et al., 1999; Rabaey and Rozendal, 2010). Electromethanogenesis has similarities with MES since CO2 is the feedstock, but in this case CO2 will be reduced to methane by a methanogenic microbial catalyst using electrons derived from a cathode (Cheng et al., 2009; Villano et al., 2010; Kobayashi et al., 2013).

Bottom Line: MES is a process in which electroautotrophic microbes use electrical current as electron source to reduce CO2 to multicarbon organics.The net outcome is that renewable energy is stored in the covalent bonds of organic compounds synthesized from greenhouse gas.This review will discuss the future of MES and the challenges that lie ahead for its development into a mature technology.

View Article: PubMed Central - PubMed

Affiliation: Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm Denmark.

ABSTRACT
Powering microbes with electrical energy to produce valuable chemicals such as biofuels has recently gained traction as a biosustainable strategy to reduce our dependence on oil. Microbial electrosynthesis (MES) is one of the bioelectrochemical approaches developed in the last decade that could have critical impact on the current methods of chemical synthesis. MES is a process in which electroautotrophic microbes use electrical current as electron source to reduce CO2 to multicarbon organics. Electricity necessary for MES can be harvested from renewable resources such as solar energy, wind turbine, or wastewater treatment processes. The net outcome is that renewable energy is stored in the covalent bonds of organic compounds synthesized from greenhouse gas. This review will discuss the future of MES and the challenges that lie ahead for its development into a mature technology.

No MeSH data available.


Related in: MedlinePlus