Limits...
Vitamin B12 insufficiency induces cholesterol biosynthesis by limiting s-adenosylmethionine and modulating the methylation of SREBF1 and LDLR genes.

Adaikalakoteswari A, Finer S, Voyias PD, McCarthy CM, Vatish M, Moore J, Smart-Halajko M, Bawazeer N, Al-Daghri NM, McTernan PG, Kumar S, Hitman GA, Saravanan P, Tripathi G - Clin Epigenetics (2015)

Bottom Line: The induction of cholesterol biosynthesis was associated with reduced s-adenosylmethionine (AdoMet)-to-s-adenosylhomocysteine (AdoHcy) ratio, also known as methylation potential (MP).We therefore studied whether reduced MP could lead to hypomethylation of genes involved in the regulation of cholesterol biosynthesis.This finding was further confirmed by the addition of the methylation inhibitor, 5-aza-2'-deoxycytidine, which resulted in increased SREBF1 and LDLR expressions and cholesterol accumulation in vitamin B12-sufficient conditions.

View Article: PubMed Central - PubMed

Affiliation: Division of Metabolic and Vascular Health, Clinical Sciences Research Laboratories, Warwick Medical School, University Hospital Coventry and Warwickshire, University of Warwick, Clifford Bridge Road, Coventry, CV2 2DX UK.

ABSTRACT

Background: The dietary supply of methyl donors such as folate, vitamin B12, betaine, methionine, and choline is essential for normal growth, development, and physiological functions through the life course. Both human and animal studies have shown that vitamin B12 deficiency is associated with altered lipid profile and play an important role in the prediction of metabolic risk, however, as of yet, no direct mechanism has been investigated to confirm this.

Results: Three independent clinical studies of women (i) non-pregnant at child-bearing age, (ii) in early pregnancy, and (iii) at delivery showed that low vitamin B12 status was associated with higher total cholesterol, LDL cholesterol, and cholesterol-to-HDL ratio. These results guided the investigation into the cellular mechanisms of induced cholesterol biosynthesis due to vitamin B12 deficiency, using human adipocytes as a model system. Adipocytes cultured in low or no vitamin B12 conditions had increased cholesterol and homocysteine levels compared to control. The induction of cholesterol biosynthesis was associated with reduced s-adenosylmethionine (AdoMet)-to-s-adenosylhomocysteine (AdoHcy) ratio, also known as methylation potential (MP). We therefore studied whether reduced MP could lead to hypomethylation of genes involved in the regulation of cholesterol biosynthesis. Genome-wide and targeted DNA methylation analysis identified that the promoter regions of SREBF1 and LDLR, two key regulators of cholesterol biosynthesis, were hypomethylated under vitamin B12-deficient conditions, and as a result, their expressions and cholesterol biosynthesis were also significantly increased. This finding was further confirmed by the addition of the methylation inhibitor, 5-aza-2'-deoxycytidine, which resulted in increased SREBF1 and LDLR expressions and cholesterol accumulation in vitamin B12-sufficient conditions. Finally, we observed that the expression of SREBF1, LDLR, and cholesterol biosynthesis genes were increased in adipose tissue of vitamin B12 deficient mothers compared to control group.

Conclusions: Clinical data suggests that vitamin B12 deficiency is an important metabolic risk factor. Regulation of AdoMet-to-AdoHcy levels by vitamin B12 could be an important mechanism by which it can influence cholesterol biosynthesis pathway in human adipocytes.

No MeSH data available.


Related in: MedlinePlus

Regression coefficient of vitamin B12with (A) cholesterol and (B) triglycerides in pregnant women. *Log-transformed for statistical comparisons. Model included B12, age, and BMI.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4356060&req=5

Fig1: Regression coefficient of vitamin B12with (A) cholesterol and (B) triglycerides in pregnant women. *Log-transformed for statistical comparisons. Model included B12, age, and BMI.

Mentions: A cohort of 152 pregnant women living in Riyadh, KSA, participated in an observational study designed to assess the B12, folate, and homocysteine status during pregnancy. The data collection was carried out from pregnant women at the second trimester: between 16 to 28 weeks gestation. The prevalence of serum B12 insufficiency (<148 pmol/L) was 45%. Compared to normal B12 women, low B12 women had significantly higher BMI, cholesterol, triglycerides, and homocysteine than normal B12 women (Table 1). In addition, B12 independently predicted cholesterol (β = −0.150; P < 0.001) and triglycerides (β = −0.201; P = 0.005) after adjusting for age and BMI in multiple regression analysis. B12 explained 7.5% (P = 0.001) of the variation in cholesterol and 7.4% (P = 0.005) of the variation in triglycerides (Figure 1A and B).Figure 1


Vitamin B12 insufficiency induces cholesterol biosynthesis by limiting s-adenosylmethionine and modulating the methylation of SREBF1 and LDLR genes.

Adaikalakoteswari A, Finer S, Voyias PD, McCarthy CM, Vatish M, Moore J, Smart-Halajko M, Bawazeer N, Al-Daghri NM, McTernan PG, Kumar S, Hitman GA, Saravanan P, Tripathi G - Clin Epigenetics (2015)

Regression coefficient of vitamin B12with (A) cholesterol and (B) triglycerides in pregnant women. *Log-transformed for statistical comparisons. Model included B12, age, and BMI.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4356060&req=5

Fig1: Regression coefficient of vitamin B12with (A) cholesterol and (B) triglycerides in pregnant women. *Log-transformed for statistical comparisons. Model included B12, age, and BMI.
Mentions: A cohort of 152 pregnant women living in Riyadh, KSA, participated in an observational study designed to assess the B12, folate, and homocysteine status during pregnancy. The data collection was carried out from pregnant women at the second trimester: between 16 to 28 weeks gestation. The prevalence of serum B12 insufficiency (<148 pmol/L) was 45%. Compared to normal B12 women, low B12 women had significantly higher BMI, cholesterol, triglycerides, and homocysteine than normal B12 women (Table 1). In addition, B12 independently predicted cholesterol (β = −0.150; P < 0.001) and triglycerides (β = −0.201; P = 0.005) after adjusting for age and BMI in multiple regression analysis. B12 explained 7.5% (P = 0.001) of the variation in cholesterol and 7.4% (P = 0.005) of the variation in triglycerides (Figure 1A and B).Figure 1

Bottom Line: The induction of cholesterol biosynthesis was associated with reduced s-adenosylmethionine (AdoMet)-to-s-adenosylhomocysteine (AdoHcy) ratio, also known as methylation potential (MP).We therefore studied whether reduced MP could lead to hypomethylation of genes involved in the regulation of cholesterol biosynthesis.This finding was further confirmed by the addition of the methylation inhibitor, 5-aza-2'-deoxycytidine, which resulted in increased SREBF1 and LDLR expressions and cholesterol accumulation in vitamin B12-sufficient conditions.

View Article: PubMed Central - PubMed

Affiliation: Division of Metabolic and Vascular Health, Clinical Sciences Research Laboratories, Warwick Medical School, University Hospital Coventry and Warwickshire, University of Warwick, Clifford Bridge Road, Coventry, CV2 2DX UK.

ABSTRACT

Background: The dietary supply of methyl donors such as folate, vitamin B12, betaine, methionine, and choline is essential for normal growth, development, and physiological functions through the life course. Both human and animal studies have shown that vitamin B12 deficiency is associated with altered lipid profile and play an important role in the prediction of metabolic risk, however, as of yet, no direct mechanism has been investigated to confirm this.

Results: Three independent clinical studies of women (i) non-pregnant at child-bearing age, (ii) in early pregnancy, and (iii) at delivery showed that low vitamin B12 status was associated with higher total cholesterol, LDL cholesterol, and cholesterol-to-HDL ratio. These results guided the investigation into the cellular mechanisms of induced cholesterol biosynthesis due to vitamin B12 deficiency, using human adipocytes as a model system. Adipocytes cultured in low or no vitamin B12 conditions had increased cholesterol and homocysteine levels compared to control. The induction of cholesterol biosynthesis was associated with reduced s-adenosylmethionine (AdoMet)-to-s-adenosylhomocysteine (AdoHcy) ratio, also known as methylation potential (MP). We therefore studied whether reduced MP could lead to hypomethylation of genes involved in the regulation of cholesterol biosynthesis. Genome-wide and targeted DNA methylation analysis identified that the promoter regions of SREBF1 and LDLR, two key regulators of cholesterol biosynthesis, were hypomethylated under vitamin B12-deficient conditions, and as a result, their expressions and cholesterol biosynthesis were also significantly increased. This finding was further confirmed by the addition of the methylation inhibitor, 5-aza-2'-deoxycytidine, which resulted in increased SREBF1 and LDLR expressions and cholesterol accumulation in vitamin B12-sufficient conditions. Finally, we observed that the expression of SREBF1, LDLR, and cholesterol biosynthesis genes were increased in adipose tissue of vitamin B12 deficient mothers compared to control group.

Conclusions: Clinical data suggests that vitamin B12 deficiency is an important metabolic risk factor. Regulation of AdoMet-to-AdoHcy levels by vitamin B12 could be an important mechanism by which it can influence cholesterol biosynthesis pathway in human adipocytes.

No MeSH data available.


Related in: MedlinePlus