Limits...
Women are underrepresented in fields where success is believed to require brilliance.

Meyer M, Cimpian A, Leslie SJ - Front Psychol (2015)

Bottom Line: In two studies, we provide evidence for the FAB hypothesis, demonstrating that the academic fields believed by laypeople to require brilliance are also the fields with lower female representation.Finally, we found that beliefs about the importance of brilliance to success in a field may predict its female representation in part by fostering the impression that the field demands solitary work and competition with others.These results suggest new solutions for enhancing diversity within STEM and across the academic spectrum.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, Otterbein University, Westerville OH, USA.

ABSTRACT
Women's underrepresentation in science, technology, engineering, and mathematics (STEM) fields is a prominent concern in our society and many others. Closer inspection of this phenomenon reveals a more nuanced picture, however, with women achieving parity with men at the Ph.D. level in certain STEM fields, while also being underrepresented in some non-STEM fields. It is important to consider and provide an account of this field-by-field variability. The field-specific ability beliefs (FAB) hypothesis aims to provide such an account, proposing that women are likely to be underrepresented in fields thought to require raw intellectual talent-a sort of talent that women are stereotyped to possess less of than men. In two studies, we provide evidence for the FAB hypothesis, demonstrating that the academic fields believed by laypeople to require brilliance are also the fields with lower female representation. We also found that the FABs of participants with college-level exposure to a field were more predictive of its female representation than those of participants without college exposure, presumably because the former beliefs mirror more closely those of the field's practitioners (the direct "gatekeepers"). Moreover, the FABs of participants with college exposure to a field predicted the magnitude of the field's gender gap above and beyond their beliefs about the level of mathematical and verbal skills required. Finally, we found that beliefs about the importance of brilliance to success in a field may predict its female representation in part by fostering the impression that the field demands solitary work and competition with others. These results suggest new solutions for enhancing diversity within STEM and across the academic spectrum.

No MeSH data available.


Related in: MedlinePlus

The indirect pathways linking non-college-exposed participants’ FABs with women’s representation via participants’ beliefs about the amount of solo work (top) and the level of competitiveness (bottom) required by a field (Study 2). *p < 0.05; **p < 0.01.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4356003&req=5

Figure 4: The indirect pathways linking non-college-exposed participants’ FABs with women’s representation via participants’ beliefs about the amount of solo work (top) and the level of competitiveness (bottom) required by a field (Study 2). *p < 0.05; **p < 0.01.

Mentions: Finally, we tested the prediction that beliefs about solo work and competitiveness would mediate the relationship between FABs and female representation. Consistent with our argument, a bootstrapped (1,000 replications) product-of-coefficients mediation analysis performed with the PROCESS procedure in SPSS 22 (Hayes, 2013) revealed that the relationship between college-exposed participants’ ability beliefs about a discipline and the proportion of female Ph.D.’s in that discipline was significantly mediated by these participants’ ideas about the amount of solo work and the level of competitiveness required by the discipline, ab = -13.56 (-26.74, -2.91). Similar results were obtained when examining beliefs of non-college-exposed participants, ab = -13.61 (-24.65, -5.94)5. (For full results of the mediation models, see Figures 3 and 4.) Results are thus consistent with the idea that FABs may influence women’s participation in a field in part by influencing their beliefs about what it is like to be a member of that field—in particular, whether one works by oneself or with others, and whether success rests more on competition with colleagues rather than cooperation. Interestingly, this result was observed even within the group who had not had college exposure to the field, which may be because inferences about the nature of the work demanded by various fields are easily drawn from one’s ability beliefs about these fields, no matter how much first-hand experience one has with them.


Women are underrepresented in fields where success is believed to require brilliance.

Meyer M, Cimpian A, Leslie SJ - Front Psychol (2015)

The indirect pathways linking non-college-exposed participants’ FABs with women’s representation via participants’ beliefs about the amount of solo work (top) and the level of competitiveness (bottom) required by a field (Study 2). *p < 0.05; **p < 0.01.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4356003&req=5

Figure 4: The indirect pathways linking non-college-exposed participants’ FABs with women’s representation via participants’ beliefs about the amount of solo work (top) and the level of competitiveness (bottom) required by a field (Study 2). *p < 0.05; **p < 0.01.
Mentions: Finally, we tested the prediction that beliefs about solo work and competitiveness would mediate the relationship between FABs and female representation. Consistent with our argument, a bootstrapped (1,000 replications) product-of-coefficients mediation analysis performed with the PROCESS procedure in SPSS 22 (Hayes, 2013) revealed that the relationship between college-exposed participants’ ability beliefs about a discipline and the proportion of female Ph.D.’s in that discipline was significantly mediated by these participants’ ideas about the amount of solo work and the level of competitiveness required by the discipline, ab = -13.56 (-26.74, -2.91). Similar results were obtained when examining beliefs of non-college-exposed participants, ab = -13.61 (-24.65, -5.94)5. (For full results of the mediation models, see Figures 3 and 4.) Results are thus consistent with the idea that FABs may influence women’s participation in a field in part by influencing their beliefs about what it is like to be a member of that field—in particular, whether one works by oneself or with others, and whether success rests more on competition with colleagues rather than cooperation. Interestingly, this result was observed even within the group who had not had college exposure to the field, which may be because inferences about the nature of the work demanded by various fields are easily drawn from one’s ability beliefs about these fields, no matter how much first-hand experience one has with them.

Bottom Line: In two studies, we provide evidence for the FAB hypothesis, demonstrating that the academic fields believed by laypeople to require brilliance are also the fields with lower female representation.Finally, we found that beliefs about the importance of brilliance to success in a field may predict its female representation in part by fostering the impression that the field demands solitary work and competition with others.These results suggest new solutions for enhancing diversity within STEM and across the academic spectrum.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, Otterbein University, Westerville OH, USA.

ABSTRACT
Women's underrepresentation in science, technology, engineering, and mathematics (STEM) fields is a prominent concern in our society and many others. Closer inspection of this phenomenon reveals a more nuanced picture, however, with women achieving parity with men at the Ph.D. level in certain STEM fields, while also being underrepresented in some non-STEM fields. It is important to consider and provide an account of this field-by-field variability. The field-specific ability beliefs (FAB) hypothesis aims to provide such an account, proposing that women are likely to be underrepresented in fields thought to require raw intellectual talent-a sort of talent that women are stereotyped to possess less of than men. In two studies, we provide evidence for the FAB hypothesis, demonstrating that the academic fields believed by laypeople to require brilliance are also the fields with lower female representation. We also found that the FABs of participants with college-level exposure to a field were more predictive of its female representation than those of participants without college exposure, presumably because the former beliefs mirror more closely those of the field's practitioners (the direct "gatekeepers"). Moreover, the FABs of participants with college exposure to a field predicted the magnitude of the field's gender gap above and beyond their beliefs about the level of mathematical and verbal skills required. Finally, we found that beliefs about the importance of brilliance to success in a field may predict its female representation in part by fostering the impression that the field demands solitary work and competition with others. These results suggest new solutions for enhancing diversity within STEM and across the academic spectrum.

No MeSH data available.


Related in: MedlinePlus