Limits...
Women are underrepresented in fields where success is believed to require brilliance.

Meyer M, Cimpian A, Leslie SJ - Front Psychol (2015)

Bottom Line: In two studies, we provide evidence for the FAB hypothesis, demonstrating that the academic fields believed by laypeople to require brilliance are also the fields with lower female representation.Finally, we found that beliefs about the importance of brilliance to success in a field may predict its female representation in part by fostering the impression that the field demands solitary work and competition with others.These results suggest new solutions for enhancing diversity within STEM and across the academic spectrum.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, Otterbein University, Westerville OH, USA.

ABSTRACT
Women's underrepresentation in science, technology, engineering, and mathematics (STEM) fields is a prominent concern in our society and many others. Closer inspection of this phenomenon reveals a more nuanced picture, however, with women achieving parity with men at the Ph.D. level in certain STEM fields, while also being underrepresented in some non-STEM fields. It is important to consider and provide an account of this field-by-field variability. The field-specific ability beliefs (FAB) hypothesis aims to provide such an account, proposing that women are likely to be underrepresented in fields thought to require raw intellectual talent-a sort of talent that women are stereotyped to possess less of than men. In two studies, we provide evidence for the FAB hypothesis, demonstrating that the academic fields believed by laypeople to require brilliance are also the fields with lower female representation. We also found that the FABs of participants with college-level exposure to a field were more predictive of its female representation than those of participants without college exposure, presumably because the former beliefs mirror more closely those of the field's practitioners (the direct "gatekeepers"). Moreover, the FABs of participants with college exposure to a field predicted the magnitude of the field's gender gap above and beyond their beliefs about the level of mathematical and verbal skills required. Finally, we found that beliefs about the importance of brilliance to success in a field may predict its female representation in part by fostering the impression that the field demands solitary work and competition with others. These results suggest new solutions for enhancing diversity within STEM and across the academic spectrum.

No MeSH data available.


Related in: MedlinePlus

Diagram of the field-specific ability beliefs (FAB) hypothesis.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4356003&req=5

Figure 1: Diagram of the field-specific ability beliefs (FAB) hypothesis.

Mentions: A recent article in Scientific American Mind begins: “Try this simple thought experiment. Name 10 female geniuses from any period of history. Odds are you ran out of names pretty quickly” (Upson and Friedman, 2012, p. 63). The thought experiment can be adapted: try to name 10 female figures in popular culture who—like Sherlock Holmes, Dr. House, or Will Hunting—are characterized by their innate brilliance, their raw intellectual firepower. As before, one rapidly runs out of names. Whatever the cause, the message is clear: women are not culturally associated with such inherent gifts of genius (Bennett, 1996, 1997, 2000; Tiedemann, 2000; Rammstedt and Rammsayer, 2002; Furnham et al., 2006; Kirkcaldy et al., 2007; Upson and Friedman, 2012; Lecklider, 2013; Stephens-Davidowitz, 2014). The consequences of this stereotype are likely wide-ranging. In the current study, we focus on one of these consequences, asking whether such a pervasive cultural message might have a role in shaping individuals’ academic and career paths. Specifically, if it is widely believed that men tend to possess more intellectual ability than women, then women may be discouraged from entering into fields that are thought to require this ability. We call this the field-specific ability beliefs (FAB) hypothesis (Figure 1): the more a field is believed to require raw brilliance, the fewer the women (Leslie and Cimpian et al., 2015). We test this hypothesis in the context of gender gaps in academia, investigating whether these gaps are predicted by how much laypeople assume that success in various fields rests on raw ability.


Women are underrepresented in fields where success is believed to require brilliance.

Meyer M, Cimpian A, Leslie SJ - Front Psychol (2015)

Diagram of the field-specific ability beliefs (FAB) hypothesis.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4356003&req=5

Figure 1: Diagram of the field-specific ability beliefs (FAB) hypothesis.
Mentions: A recent article in Scientific American Mind begins: “Try this simple thought experiment. Name 10 female geniuses from any period of history. Odds are you ran out of names pretty quickly” (Upson and Friedman, 2012, p. 63). The thought experiment can be adapted: try to name 10 female figures in popular culture who—like Sherlock Holmes, Dr. House, or Will Hunting—are characterized by their innate brilliance, their raw intellectual firepower. As before, one rapidly runs out of names. Whatever the cause, the message is clear: women are not culturally associated with such inherent gifts of genius (Bennett, 1996, 1997, 2000; Tiedemann, 2000; Rammstedt and Rammsayer, 2002; Furnham et al., 2006; Kirkcaldy et al., 2007; Upson and Friedman, 2012; Lecklider, 2013; Stephens-Davidowitz, 2014). The consequences of this stereotype are likely wide-ranging. In the current study, we focus on one of these consequences, asking whether such a pervasive cultural message might have a role in shaping individuals’ academic and career paths. Specifically, if it is widely believed that men tend to possess more intellectual ability than women, then women may be discouraged from entering into fields that are thought to require this ability. We call this the field-specific ability beliefs (FAB) hypothesis (Figure 1): the more a field is believed to require raw brilliance, the fewer the women (Leslie and Cimpian et al., 2015). We test this hypothesis in the context of gender gaps in academia, investigating whether these gaps are predicted by how much laypeople assume that success in various fields rests on raw ability.

Bottom Line: In two studies, we provide evidence for the FAB hypothesis, demonstrating that the academic fields believed by laypeople to require brilliance are also the fields with lower female representation.Finally, we found that beliefs about the importance of brilliance to success in a field may predict its female representation in part by fostering the impression that the field demands solitary work and competition with others.These results suggest new solutions for enhancing diversity within STEM and across the academic spectrum.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, Otterbein University, Westerville OH, USA.

ABSTRACT
Women's underrepresentation in science, technology, engineering, and mathematics (STEM) fields is a prominent concern in our society and many others. Closer inspection of this phenomenon reveals a more nuanced picture, however, with women achieving parity with men at the Ph.D. level in certain STEM fields, while also being underrepresented in some non-STEM fields. It is important to consider and provide an account of this field-by-field variability. The field-specific ability beliefs (FAB) hypothesis aims to provide such an account, proposing that women are likely to be underrepresented in fields thought to require raw intellectual talent-a sort of talent that women are stereotyped to possess less of than men. In two studies, we provide evidence for the FAB hypothesis, demonstrating that the academic fields believed by laypeople to require brilliance are also the fields with lower female representation. We also found that the FABs of participants with college-level exposure to a field were more predictive of its female representation than those of participants without college exposure, presumably because the former beliefs mirror more closely those of the field's practitioners (the direct "gatekeepers"). Moreover, the FABs of participants with college exposure to a field predicted the magnitude of the field's gender gap above and beyond their beliefs about the level of mathematical and verbal skills required. Finally, we found that beliefs about the importance of brilliance to success in a field may predict its female representation in part by fostering the impression that the field demands solitary work and competition with others. These results suggest new solutions for enhancing diversity within STEM and across the academic spectrum.

No MeSH data available.


Related in: MedlinePlus