Limits...
The status of evolutionary medicine education in North American medical schools.

Hidaka BH, Asghar A, Aktipis CA, Nesse RM, Wolpaw TM, Skursky NK, Bennett KJ, Beyrouty MW, Schwartz MD - BMC Med Educ (2015)

Bottom Line: Open-ended questions sought insight into perceived barriers and benefits.Limited resources (faculty expertise) were cited as the major barrier to adding more evolution, but benefits included a deeper understanding and improved patient care.Efforts to improve evolution education in medical schools should be directed toward boosting faculty expertise and crafting resources that can be easily integrated into existing curricula.

View Article: PubMed Central - PubMed

Affiliation: University of Kansas Medical Center, 3901 W Rainbow Blvd, Kansas City, KS, 66160, USA. bhidaka@kumc.edu.

ABSTRACT

Background: Medical and public health scientists are using evolution to devise new strategies to solve major health problems. But based on a 2003 survey, medical curricula may not adequately prepare physicians to evaluate and extend these advances. This study assessed the change in coverage of evolution in North American medical schools since 2003 and identified opportunities for enriching medical education.

Methods: In 2013, curriculum deans for all North American medical schools were invited to rate curricular coverage and perceived importance of 12 core principles, the extent of anticipated controversy from adding evolution, and the usefulness of 13 teaching resources. Differences between schools were assessed by Pearson's chi-square test, Student's t-test, and Spearman's correlation. Open-ended questions sought insight into perceived barriers and benefits.

Results: Despite repeated follow-up, 60 schools (39%) responded to the survey. There was no evidence of sample bias. The three evolutionary principles rated most important were antibiotic resistance, environmental mismatch, and somatic selection in cancer. While importance and coverage of principles were correlated (r = 0.76, P < 0.01), coverage (at least moderate) lagged behind importance (at least moderate) by an average of 21% (SD = 6%). Compared to 2003, a range of evolutionary principles were covered by 4 to 74% more schools. Nearly half (48%) of responders anticipated igniting controversy at their medical school if they added evolution to their curriculum. The teaching resources ranked most useful were model test questions and answers, case studies, and model curricula for existing courses/rotations. Limited resources (faculty expertise) were cited as the major barrier to adding more evolution, but benefits included a deeper understanding and improved patient care.

Conclusion: North American medical schools have increased the evolution content in their curricula over the past decade. However, coverage is not commensurate with importance. At a few medical schools, anticipated controversy impedes teaching more evolution. Efforts to improve evolution education in medical schools should be directed toward boosting faculty expertise and crafting resources that can be easily integrated into existing curricula.

Show MeSH

Related in: MedlinePlus

Faculty and time for teaching evolutionary medicine. A: Evolutionary biology expertise among North American medical school faculty in 2013 B: Reported time spent teaching evolution in North American medical school curricula in 2013. One school that reported 102 hours is not shown here.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4355969&req=5

Fig1: Faculty and time for teaching evolutionary medicine. A: Evolutionary biology expertise among North American medical school faculty in 2013 B: Reported time spent teaching evolution in North American medical school curricula in 2013. One school that reported 102 hours is not shown here.

Mentions: The number of faculty at the medical school and hours in the curriculum related to evolution are shown in Figures 1A and B, respectively. The median (IQR) number of faculty with a PhD in evolutionary biology was 0 (0, 2), with 57% (25/44) reporting none. Forty-nine percent (22/45) reported having at least one faculty whose research is based on evolutionary biology, with a median of 0 (0, 2). Responding schools reported a median of 6 (4, 16) hours allocated to teaching specific topics in evolutionary biology and 5 (2, 15) hours devoted to teaching applications of evolutionary principles to specific medical problems. One school claimed to devote 102 hours to teaching how evolution applies to specific medical problems.Figure 1


The status of evolutionary medicine education in North American medical schools.

Hidaka BH, Asghar A, Aktipis CA, Nesse RM, Wolpaw TM, Skursky NK, Bennett KJ, Beyrouty MW, Schwartz MD - BMC Med Educ (2015)

Faculty and time for teaching evolutionary medicine. A: Evolutionary biology expertise among North American medical school faculty in 2013 B: Reported time spent teaching evolution in North American medical school curricula in 2013. One school that reported 102 hours is not shown here.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4355969&req=5

Fig1: Faculty and time for teaching evolutionary medicine. A: Evolutionary biology expertise among North American medical school faculty in 2013 B: Reported time spent teaching evolution in North American medical school curricula in 2013. One school that reported 102 hours is not shown here.
Mentions: The number of faculty at the medical school and hours in the curriculum related to evolution are shown in Figures 1A and B, respectively. The median (IQR) number of faculty with a PhD in evolutionary biology was 0 (0, 2), with 57% (25/44) reporting none. Forty-nine percent (22/45) reported having at least one faculty whose research is based on evolutionary biology, with a median of 0 (0, 2). Responding schools reported a median of 6 (4, 16) hours allocated to teaching specific topics in evolutionary biology and 5 (2, 15) hours devoted to teaching applications of evolutionary principles to specific medical problems. One school claimed to devote 102 hours to teaching how evolution applies to specific medical problems.Figure 1

Bottom Line: Open-ended questions sought insight into perceived barriers and benefits.Limited resources (faculty expertise) were cited as the major barrier to adding more evolution, but benefits included a deeper understanding and improved patient care.Efforts to improve evolution education in medical schools should be directed toward boosting faculty expertise and crafting resources that can be easily integrated into existing curricula.

View Article: PubMed Central - PubMed

Affiliation: University of Kansas Medical Center, 3901 W Rainbow Blvd, Kansas City, KS, 66160, USA. bhidaka@kumc.edu.

ABSTRACT

Background: Medical and public health scientists are using evolution to devise new strategies to solve major health problems. But based on a 2003 survey, medical curricula may not adequately prepare physicians to evaluate and extend these advances. This study assessed the change in coverage of evolution in North American medical schools since 2003 and identified opportunities for enriching medical education.

Methods: In 2013, curriculum deans for all North American medical schools were invited to rate curricular coverage and perceived importance of 12 core principles, the extent of anticipated controversy from adding evolution, and the usefulness of 13 teaching resources. Differences between schools were assessed by Pearson's chi-square test, Student's t-test, and Spearman's correlation. Open-ended questions sought insight into perceived barriers and benefits.

Results: Despite repeated follow-up, 60 schools (39%) responded to the survey. There was no evidence of sample bias. The three evolutionary principles rated most important were antibiotic resistance, environmental mismatch, and somatic selection in cancer. While importance and coverage of principles were correlated (r = 0.76, P < 0.01), coverage (at least moderate) lagged behind importance (at least moderate) by an average of 21% (SD = 6%). Compared to 2003, a range of evolutionary principles were covered by 4 to 74% more schools. Nearly half (48%) of responders anticipated igniting controversy at their medical school if they added evolution to their curriculum. The teaching resources ranked most useful were model test questions and answers, case studies, and model curricula for existing courses/rotations. Limited resources (faculty expertise) were cited as the major barrier to adding more evolution, but benefits included a deeper understanding and improved patient care.

Conclusion: North American medical schools have increased the evolution content in their curricula over the past decade. However, coverage is not commensurate with importance. At a few medical schools, anticipated controversy impedes teaching more evolution. Efforts to improve evolution education in medical schools should be directed toward boosting faculty expertise and crafting resources that can be easily integrated into existing curricula.

Show MeSH
Related in: MedlinePlus