Limits...
Molecular-based approaches to characterize coastal microbial community and their potential relation to the trophic state of Red Sea.

Ansari MI, Harb M, Jones B, Hong PY - Sci Rep (2015)

Bottom Line: Microbial source tracking revealed the presence of >1 human-associated Bacteroides spp. at some of the near-shore sampling sites and at a heavily frequented beach.Enterococci abundances obtained from next-generation sequencing did not correlate well with the cultured enterococci numbers.Operational taxonomic units (OTUs) associated with cyanobacteria, Prochlorococcus, Ostreococcus spp. and Gramella were more prevalent in waters that were likely impacted by urban runoffs and recreational activities.

View Article: PubMed Central - PubMed

Affiliation: Water Desalination and Reuse Center, Environmental Science and Engineering.

ABSTRACT
Molecular-based approaches were used to characterize the coastal microbiota and to elucidate the trophic state of Red Sea. Nutrient content and enterococci numbers were monitored, and used to correlate with the abundance of microbial markers. Microbial source tracking revealed the presence of >1 human-associated Bacteroides spp. at some of the near-shore sampling sites and at a heavily frequented beach. Water samples collected from the beaches had occasional exceedances in enterococci numbers, higher total organic carbon (TOC, 1.48-2.18 mg/L) and nitrogen (TN, 0.15-0.27 mg/L) than that detected in the near-shore waters. Enterococci abundances obtained from next-generation sequencing did not correlate well with the cultured enterococci numbers. The abundance of certain genera, for example Arcobacter, Pseudomonas and unclassified Campylobacterales, was observed to exhibit slight correlation with TOC and TN. Low abundance of functional genes accounting for up to 41 copies/L of each Pseudomonas aeruginosa and Campylobacter coli were detected. Arcobacter butzleri was also detected in abundance ranging from 111 to 238 copies/L. Operational taxonomic units (OTUs) associated with cyanobacteria, Prochlorococcus, Ostreococcus spp. and Gramella were more prevalent in waters that were likely impacted by urban runoffs and recreational activities. These OTUs could potentially serve as quantifiable markers indicative of the water quality.

No MeSH data available.


Water quality at the different sampling locations.TOC and TN concentrations of TW and KW were significantly different compared to the other water samples. No significant differences were observed between both upper and lower depths of sampled waters. Bottom dashed line denotes the permissible level of 40 CFU of enterococci per 100 mL of marine water.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4355682&req=5

f2: Water quality at the different sampling locations.TOC and TN concentrations of TW and KW were significantly different compared to the other water samples. No significant differences were observed between both upper and lower depths of sampled waters. Bottom dashed line denotes the permissible level of 40 CFU of enterococci per 100 mL of marine water.

Mentions: The regulatory bodies in Saudi Arabia mandate that total organic carbon (TOC) and total nitrogen (TN) are at less than 15 mg/L and 5 mg/L, respectively, in the marine waters that are adjacent to terrestrial zones14. TOC and TN concentration in all water samples fell within the limits of local standards although water sampled from the swash zones of KAUST (KW) and Thuwal (TW) beaches had a higher nutrient content than that in the near-shore waters. To illustrate, the average TOC concentration in KW and TW samples was 1.71 mg/L, while average TN concentration was 0.19 mg/L (Figure 2). The average TOC and TN concentrations in the near-shore waters (i.e., N, S, NS, and T) were 1.13 mg/L and 0.09 mg/L, respectively. The detected TOC and TN concentrations in beach waters were significantly higher than that in all samples collected from the near-shore waters (One-way ANOVA, p < 0.001). Among the near-shore samples, TN concentration in NS samples was significantly higher than that detected in the N sites (One-way ANOVA, p = 0.014) and T sites (One-way ANOVA, p = 0.022) but was not significantly higher than that in the S sites (One-way ANOVA, p = 0.053). For microbial quality, the concentration of enterococci in the local primary contact and secondary contact waters of Saudi Arabia is regulated at less than 40 CFU/100 mL and 200 CFU/100 mL, respectively14. In total, seven samples collected from KW and TW exceeded 40 CFU/100 mL (Table 1). In contrast, all near-shore waters, except one collected from S5 at the 5 m depth, had lower than 40 CFU/100 mL of enterococci (Table 1).


Molecular-based approaches to characterize coastal microbial community and their potential relation to the trophic state of Red Sea.

Ansari MI, Harb M, Jones B, Hong PY - Sci Rep (2015)

Water quality at the different sampling locations.TOC and TN concentrations of TW and KW were significantly different compared to the other water samples. No significant differences were observed between both upper and lower depths of sampled waters. Bottom dashed line denotes the permissible level of 40 CFU of enterococci per 100 mL of marine water.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4355682&req=5

f2: Water quality at the different sampling locations.TOC and TN concentrations of TW and KW were significantly different compared to the other water samples. No significant differences were observed between both upper and lower depths of sampled waters. Bottom dashed line denotes the permissible level of 40 CFU of enterococci per 100 mL of marine water.
Mentions: The regulatory bodies in Saudi Arabia mandate that total organic carbon (TOC) and total nitrogen (TN) are at less than 15 mg/L and 5 mg/L, respectively, in the marine waters that are adjacent to terrestrial zones14. TOC and TN concentration in all water samples fell within the limits of local standards although water sampled from the swash zones of KAUST (KW) and Thuwal (TW) beaches had a higher nutrient content than that in the near-shore waters. To illustrate, the average TOC concentration in KW and TW samples was 1.71 mg/L, while average TN concentration was 0.19 mg/L (Figure 2). The average TOC and TN concentrations in the near-shore waters (i.e., N, S, NS, and T) were 1.13 mg/L and 0.09 mg/L, respectively. The detected TOC and TN concentrations in beach waters were significantly higher than that in all samples collected from the near-shore waters (One-way ANOVA, p < 0.001). Among the near-shore samples, TN concentration in NS samples was significantly higher than that detected in the N sites (One-way ANOVA, p = 0.014) and T sites (One-way ANOVA, p = 0.022) but was not significantly higher than that in the S sites (One-way ANOVA, p = 0.053). For microbial quality, the concentration of enterococci in the local primary contact and secondary contact waters of Saudi Arabia is regulated at less than 40 CFU/100 mL and 200 CFU/100 mL, respectively14. In total, seven samples collected from KW and TW exceeded 40 CFU/100 mL (Table 1). In contrast, all near-shore waters, except one collected from S5 at the 5 m depth, had lower than 40 CFU/100 mL of enterococci (Table 1).

Bottom Line: Microbial source tracking revealed the presence of >1 human-associated Bacteroides spp. at some of the near-shore sampling sites and at a heavily frequented beach.Enterococci abundances obtained from next-generation sequencing did not correlate well with the cultured enterococci numbers.Operational taxonomic units (OTUs) associated with cyanobacteria, Prochlorococcus, Ostreococcus spp. and Gramella were more prevalent in waters that were likely impacted by urban runoffs and recreational activities.

View Article: PubMed Central - PubMed

Affiliation: Water Desalination and Reuse Center, Environmental Science and Engineering.

ABSTRACT
Molecular-based approaches were used to characterize the coastal microbiota and to elucidate the trophic state of Red Sea. Nutrient content and enterococci numbers were monitored, and used to correlate with the abundance of microbial markers. Microbial source tracking revealed the presence of >1 human-associated Bacteroides spp. at some of the near-shore sampling sites and at a heavily frequented beach. Water samples collected from the beaches had occasional exceedances in enterococci numbers, higher total organic carbon (TOC, 1.48-2.18 mg/L) and nitrogen (TN, 0.15-0.27 mg/L) than that detected in the near-shore waters. Enterococci abundances obtained from next-generation sequencing did not correlate well with the cultured enterococci numbers. The abundance of certain genera, for example Arcobacter, Pseudomonas and unclassified Campylobacterales, was observed to exhibit slight correlation with TOC and TN. Low abundance of functional genes accounting for up to 41 copies/L of each Pseudomonas aeruginosa and Campylobacter coli were detected. Arcobacter butzleri was also detected in abundance ranging from 111 to 238 copies/L. Operational taxonomic units (OTUs) associated with cyanobacteria, Prochlorococcus, Ostreococcus spp. and Gramella were more prevalent in waters that were likely impacted by urban runoffs and recreational activities. These OTUs could potentially serve as quantifiable markers indicative of the water quality.

No MeSH data available.