Limits...
Enterobactin-mediated delivery of β-lactam antibiotics enhances antibacterial activity against pathogenic Escherichia coli.

Zheng T, Nolan EM - J. Am. Chem. Soc. (2014)

Bottom Line: Under conditions of iron limitation, these siderophore-modified antibiotics provide enhanced antibacterial activity against Escherichia coli strains, including uropathogenic E. coli CFT073 and UTI89, enterohemorrhagic E. coli O157:H7, and enterotoxigenic E. coli O78:H11, compared to the parent β-lactams.Moreover, Ent-Amp and Ent-Amx selectively kill E. coli CFT073 co-cultured with other bacterial species such as Staphylococcus aureus, and Ent-Amp exhibits low cytotoxicity against human T84 intestinal cells in both the apo and iron-bound forms.These studies demonstrate that the native enterobactin platform provides a means to effectively deliver antibacterial cargo across the outer membrane permeability barrier of Gram-negative pathogens utilizing enterobactin for iron acquisition.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States.

ABSTRACT
The design, synthesis, and characterization of enterobactin-antibiotic conjugates, hereafter Ent-Amp/Amx, where the β-lactam antibiotics ampicillin (Amp) and amoxicillin (Amx) are linked to a monofunctionalized enterobactin scaffold via a stable poly(ethylene glycol) linker are reported. Under conditions of iron limitation, these siderophore-modified antibiotics provide enhanced antibacterial activity against Escherichia coli strains, including uropathogenic E. coli CFT073 and UTI89, enterohemorrhagic E. coli O157:H7, and enterotoxigenic E. coli O78:H11, compared to the parent β-lactams. Studies with E. coli K-12 derivatives defective in ferric enterobactin transport reveal that the enhanced antibacterial activity observed for this strain requires the outer membrane ferric enterobactin transporter FepA. A remarkable 1000-fold decrease in minimum inhibitory concentration (MIC) value is observed for uropathogenic E. coli CFT073 relative to Amp/Amx, and time-kill kinetic studies demonstrate that Ent-Amp/Amx kill this strain more rapidly at 10-fold lower concentrations than the parent antibiotics. Moreover, Ent-Amp and Ent-Amx selectively kill E. coli CFT073 co-cultured with other bacterial species such as Staphylococcus aureus, and Ent-Amp exhibits low cytotoxicity against human T84 intestinal cells in both the apo and iron-bound forms. These studies demonstrate that the native enterobactin platform provides a means to effectively deliver antibacterial cargo across the outer membrane permeability barrier of Gram-negative pathogens utilizing enterobactin for iron acquisition.

Show MeSH

Related in: MedlinePlus

Syntheses of the l and d Forms ofEnt-Amp/Amx
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4353011&req=5

sch1: Syntheses of the l and d Forms ofEnt-Amp/Amx


Enterobactin-mediated delivery of β-lactam antibiotics enhances antibacterial activity against pathogenic Escherichia coli.

Zheng T, Nolan EM - J. Am. Chem. Soc. (2014)

Syntheses of the l and d Forms ofEnt-Amp/Amx
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4353011&req=5

sch1: Syntheses of the l and d Forms ofEnt-Amp/Amx
Bottom Line: Under conditions of iron limitation, these siderophore-modified antibiotics provide enhanced antibacterial activity against Escherichia coli strains, including uropathogenic E. coli CFT073 and UTI89, enterohemorrhagic E. coli O157:H7, and enterotoxigenic E. coli O78:H11, compared to the parent β-lactams.Moreover, Ent-Amp and Ent-Amx selectively kill E. coli CFT073 co-cultured with other bacterial species such as Staphylococcus aureus, and Ent-Amp exhibits low cytotoxicity against human T84 intestinal cells in both the apo and iron-bound forms.These studies demonstrate that the native enterobactin platform provides a means to effectively deliver antibacterial cargo across the outer membrane permeability barrier of Gram-negative pathogens utilizing enterobactin for iron acquisition.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States.

ABSTRACT
The design, synthesis, and characterization of enterobactin-antibiotic conjugates, hereafter Ent-Amp/Amx, where the β-lactam antibiotics ampicillin (Amp) and amoxicillin (Amx) are linked to a monofunctionalized enterobactin scaffold via a stable poly(ethylene glycol) linker are reported. Under conditions of iron limitation, these siderophore-modified antibiotics provide enhanced antibacterial activity against Escherichia coli strains, including uropathogenic E. coli CFT073 and UTI89, enterohemorrhagic E. coli O157:H7, and enterotoxigenic E. coli O78:H11, compared to the parent β-lactams. Studies with E. coli K-12 derivatives defective in ferric enterobactin transport reveal that the enhanced antibacterial activity observed for this strain requires the outer membrane ferric enterobactin transporter FepA. A remarkable 1000-fold decrease in minimum inhibitory concentration (MIC) value is observed for uropathogenic E. coli CFT073 relative to Amp/Amx, and time-kill kinetic studies demonstrate that Ent-Amp/Amx kill this strain more rapidly at 10-fold lower concentrations than the parent antibiotics. Moreover, Ent-Amp and Ent-Amx selectively kill E. coli CFT073 co-cultured with other bacterial species such as Staphylococcus aureus, and Ent-Amp exhibits low cytotoxicity against human T84 intestinal cells in both the apo and iron-bound forms. These studies demonstrate that the native enterobactin platform provides a means to effectively deliver antibacterial cargo across the outer membrane permeability barrier of Gram-negative pathogens utilizing enterobactin for iron acquisition.

Show MeSH
Related in: MedlinePlus