Limits...
Neutral poly-/perfluoroalkyl substances in air and snow from the Arctic.

Xie Z, Wang Z, Mi W, Möller A, Wolschke H, Ebinghaus R - Sci Rep (2015)

Bottom Line: A significant log-linear relationship was observed between the gas/particle partition coefficient and vapor pressure of the neutral PFASs.For fluorotelomer alcohol (FTOHs) and fluorotelomer acrylates (FTAs), the air-snow exchange fluxes were positive, indicating net evaporative from snow into air, while net deposition into snow was observed for perfluorooctane sulfonamidoethanols (Me/EtFOSEs) in winter and spring of 2012.Air-snow exchange may significantly interfere with atmospheric concentrations of neutral PFASs in the Arctic.

View Article: PubMed Central - PubMed

Affiliation: Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Institute of Coastal Research, Department for Environmental Chemistry, Geesthacht, 21502, Germany.

ABSTRACT
Levels of neutral poly-/perfluoroalkyl substances (nPFASs) in air and snow collected from Ny-Ålesund were measured and their air-snow exchange was determined to investigate whether they could re-volatilize into the atmosphere driven by means of air-snow exchange. The total concentration of 12 neutral PFASs ranged from 6.7 to 39 pg m(-3) in air and from 330 to 690 pg L(-1) in snow. A significant log-linear relationship was observed between the gas/particle partition coefficient and vapor pressure of the neutral PFASs. For fluorotelomer alcohol (FTOHs) and fluorotelomer acrylates (FTAs), the air-snow exchange fluxes were positive, indicating net evaporative from snow into air, while net deposition into snow was observed for perfluorooctane sulfonamidoethanols (Me/EtFOSEs) in winter and spring of 2012. The air-snow exchange was snow-phase controlled for FTOHs and FTAs, and controlled by the air-phase for FOSEs. Air-snow exchange may significantly interfere with atmospheric concentrations of neutral PFASs in the Arctic.

No MeSH data available.


Temporal distribution of neutral PFASs.FTOHs and other neutral PFAS compounds measured in air at Ny-Ålesund, in the Arctic from Sep. 2011 to Sep. 2012. The black line indicates average air temperatures.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4352854&req=5

f2: Temporal distribution of neutral PFASs.FTOHs and other neutral PFAS compounds measured in air at Ny-Ålesund, in the Arctic from Sep. 2011 to Sep. 2012. The black line indicates average air temperatures.

Mentions: High-volume air sampling (gas and particle phases) was carried out from September 2011 to September 2012 on a platform for atmospheric observation at the German station located in Ny-Ålesund (78°55′N, 11°56′E) (Figure 1, Table S2). A summary of the data for neutral PFASs concentrations in the Arctic atmosphere is given in Figure 2 and Table S3. The total concentration (vapor plus particle phases) of the 12 neutral PFASs (ΣnPFASs) in the Arctic atmosphere ranged from 6.7 to 39 pg m−3 (mean: 17 pg m−3). Figure 3 shows the concentration range, mean and media of individual neutral PFASs in Ny-Ålesund. Gaseous PFASs were dominant in all air samples and accounted for 91% of ΣnPFASs. The fraction of each neutral PFAS compound to ΣnPFASs is believed to be related the specific vapor pressure of each PFAS and will be discussed later. The concentrations of PFASs were comparable with the data reported by Shoeib et al., who investigated the atmospheric levels of neutral PFASs in the North Atlantic and Canadian Archipelago20. As expected, the measured concentrations were considerably lower than those of urban and semi-urban areas2122. The most abundant chemical in air is 8:2 FTOH, representing 61% of ΣnPFASs, and next three most abundant compounds were 6:2 (13%), 10:2 (12%) and 12:2 FTOH (4.8%) (Table S3). The concentrations of 6:2, 8:2, 10:2 and 12:2 FTOH (ΣFTOHs) in air varied from 5.6 to 34 pg m−3 with a mean value of 14 pg m−3 (Figure 3), which is lower than those in Toronto (mean 79.5 pg m−3)21, Hamburg (from 32 to 204 pg m−3)22, and the North Sea (84 pg m−3)23. The concentrations of MeFBSA, MeFOSA and EtFOSA (ΣFOSAs) in air were higher than the levels of MeFBSE, MeFOSE and EtFOSE (ΣFOSEs), which is in agreement with the results reported by Wang et al.24.


Neutral poly-/perfluoroalkyl substances in air and snow from the Arctic.

Xie Z, Wang Z, Mi W, Möller A, Wolschke H, Ebinghaus R - Sci Rep (2015)

Temporal distribution of neutral PFASs.FTOHs and other neutral PFAS compounds measured in air at Ny-Ålesund, in the Arctic from Sep. 2011 to Sep. 2012. The black line indicates average air temperatures.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4352854&req=5

f2: Temporal distribution of neutral PFASs.FTOHs and other neutral PFAS compounds measured in air at Ny-Ålesund, in the Arctic from Sep. 2011 to Sep. 2012. The black line indicates average air temperatures.
Mentions: High-volume air sampling (gas and particle phases) was carried out from September 2011 to September 2012 on a platform for atmospheric observation at the German station located in Ny-Ålesund (78°55′N, 11°56′E) (Figure 1, Table S2). A summary of the data for neutral PFASs concentrations in the Arctic atmosphere is given in Figure 2 and Table S3. The total concentration (vapor plus particle phases) of the 12 neutral PFASs (ΣnPFASs) in the Arctic atmosphere ranged from 6.7 to 39 pg m−3 (mean: 17 pg m−3). Figure 3 shows the concentration range, mean and media of individual neutral PFASs in Ny-Ålesund. Gaseous PFASs were dominant in all air samples and accounted for 91% of ΣnPFASs. The fraction of each neutral PFAS compound to ΣnPFASs is believed to be related the specific vapor pressure of each PFAS and will be discussed later. The concentrations of PFASs were comparable with the data reported by Shoeib et al., who investigated the atmospheric levels of neutral PFASs in the North Atlantic and Canadian Archipelago20. As expected, the measured concentrations were considerably lower than those of urban and semi-urban areas2122. The most abundant chemical in air is 8:2 FTOH, representing 61% of ΣnPFASs, and next three most abundant compounds were 6:2 (13%), 10:2 (12%) and 12:2 FTOH (4.8%) (Table S3). The concentrations of 6:2, 8:2, 10:2 and 12:2 FTOH (ΣFTOHs) in air varied from 5.6 to 34 pg m−3 with a mean value of 14 pg m−3 (Figure 3), which is lower than those in Toronto (mean 79.5 pg m−3)21, Hamburg (from 32 to 204 pg m−3)22, and the North Sea (84 pg m−3)23. The concentrations of MeFBSA, MeFOSA and EtFOSA (ΣFOSAs) in air were higher than the levels of MeFBSE, MeFOSE and EtFOSE (ΣFOSEs), which is in agreement with the results reported by Wang et al.24.

Bottom Line: A significant log-linear relationship was observed between the gas/particle partition coefficient and vapor pressure of the neutral PFASs.For fluorotelomer alcohol (FTOHs) and fluorotelomer acrylates (FTAs), the air-snow exchange fluxes were positive, indicating net evaporative from snow into air, while net deposition into snow was observed for perfluorooctane sulfonamidoethanols (Me/EtFOSEs) in winter and spring of 2012.Air-snow exchange may significantly interfere with atmospheric concentrations of neutral PFASs in the Arctic.

View Article: PubMed Central - PubMed

Affiliation: Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Institute of Coastal Research, Department for Environmental Chemistry, Geesthacht, 21502, Germany.

ABSTRACT
Levels of neutral poly-/perfluoroalkyl substances (nPFASs) in air and snow collected from Ny-Ålesund were measured and their air-snow exchange was determined to investigate whether they could re-volatilize into the atmosphere driven by means of air-snow exchange. The total concentration of 12 neutral PFASs ranged from 6.7 to 39 pg m(-3) in air and from 330 to 690 pg L(-1) in snow. A significant log-linear relationship was observed between the gas/particle partition coefficient and vapor pressure of the neutral PFASs. For fluorotelomer alcohol (FTOHs) and fluorotelomer acrylates (FTAs), the air-snow exchange fluxes were positive, indicating net evaporative from snow into air, while net deposition into snow was observed for perfluorooctane sulfonamidoethanols (Me/EtFOSEs) in winter and spring of 2012. The air-snow exchange was snow-phase controlled for FTOHs and FTAs, and controlled by the air-phase for FOSEs. Air-snow exchange may significantly interfere with atmospheric concentrations of neutral PFASs in the Arctic.

No MeSH data available.