Limits...
G protein-coupled receptors in stem cell maintenance and somatic reprogramming to pluripotent or cancer stem cells.

Choi HY, Saha SK, Kim K, Kim S, Yang GM, Kim B, Kim JH, Cho SG - BMB Rep (2015)

Bottom Line: Several studies have also confirmed their central roles in embryonic development and stem cell maintenance.Our study and other reports have revealed that the expression of many GPCRs is modulated during the generation of induced PSCs (iPSCs) or CSCs as well as during CSC sphere formation.This review addresses the current understanding of the role of GPCRs in stem cell maintenance and somatic reprogramming to PSCs or CSCs.

View Article: PubMed Central - PubMed

Affiliation: Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 143-701, Korea.

ABSTRACT
G protein-coupled receptors (GPCRs) are a large class of transmembrane receptors categorized into five distinct families: rhodopsin, secretin, adhesion, glutamate, and frizzled. They bind and regulate 80% of all hormones and account for 20-50% of the pharmaceuticals currently on the market. Hundreds of GPCRs integrate and coordinate the functions of individual cells, mediating signaling between various organs. GPCRs are crucial players in tumor progression, adipogenesis, and inflammation. Several studies have also confirmed their central roles in embryonic development and stem cell maintenance. Recently, GPCRs have emerged as key players in the regulation of cell survival, proliferation, migration, and self-renewal in pluripotent (PSCs) and cancer stem cells (CSCs). Our study and other reports have revealed that the expression of many GPCRs is modulated during the generation of induced PSCs (iPSCs) or CSCs as well as during CSC sphere formation. These GPCRs may have crucial roles in the regulation of selfrenewal and other biological properties of iPSCs and CSCs. This review addresses the current understanding of the role of GPCRs in stem cell maintenance and somatic reprogramming to PSCs or CSCs.

Show MeSH

Related in: MedlinePlus

Differential GPCRs and GPCR signaling, which may be involved in stem cell maintenance and/or during somatic reprogramming to iPSCs or CSCs. (A) The GPCR superfamily has traditionally been divided into three major families: class A/rhodopsin-like receptors, class B/secretin-like receptors, and class C/glutamate-like receptors. Recent bioinformatics analyses have updated the phylogenetic characterization to five distinct families: glutamate, rhodopsin, adhesion, frizzled and secretin (GRAFS classification system). (B) Various ligands bind GPCRs to stimulate various G proteins. GPCRs interact with heterotrimeric G proteins composed of α, β, and γ subunits that are guanosine diphosphate bound in the resting state. Most GPCRs activate one or multiple Gα proteins, which can be subdivided into four major families: Gαi, Gα12, Gαs, and Gαq. Ultimately, the integration of the functional activities of G protein-regulated signaling networks controls many cellular functions, and the aberrant activities of G proteins and their downstream target molecules can contribute to various cellular mechanisms, including roles in stem cell maintenance and somatic reprogramming to iPSCs or CSCs. (B) Activation of pluripotency and differentiation pathways by GPCRs.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4352616&req=5

Figure 002: Differential GPCRs and GPCR signaling, which may be involved in stem cell maintenance and/or during somatic reprogramming to iPSCs or CSCs. (A) The GPCR superfamily has traditionally been divided into three major families: class A/rhodopsin-like receptors, class B/secretin-like receptors, and class C/glutamate-like receptors. Recent bioinformatics analyses have updated the phylogenetic characterization to five distinct families: glutamate, rhodopsin, adhesion, frizzled and secretin (GRAFS classification system). (B) Various ligands bind GPCRs to stimulate various G proteins. GPCRs interact with heterotrimeric G proteins composed of α, β, and γ subunits that are guanosine diphosphate bound in the resting state. Most GPCRs activate one or multiple Gα proteins, which can be subdivided into four major families: Gαi, Gα12, Gαs, and Gαq. Ultimately, the integration of the functional activities of G protein-regulated signaling networks controls many cellular functions, and the aberrant activities of G proteins and their downstream target molecules can contribute to various cellular mechanisms, including roles in stem cell maintenance and somatic reprogramming to iPSCs or CSCs. (B) Activation of pluripotency and differentiation pathways by GPCRs.

Mentions: GPCRs bind and regulate the effects of 80% of all hormones in the body and account for 20-50% of the pharmaceuticals on the current market (9). Members of the GPCR superfamily have seven transmembrane (TM) domains as well as extracellular Nand cytosolic C-termini (10). The exact size of the GPCR superfamily is unknown, but nearly 800 GPCR genes comprise 3-5% of the human genome. The superfamily has traditionally been divided into three major families−class A/rhodopsin-like receptors, class B/secretin-like receptors, and class C/glutamate-like receptors. The largest class is class A, which accounts for almost 85% of the GPCR genes. Recent bioinformatics analyses have updated the phylogenetic characterization to five distinct families: glutamate, rhodopsin, adhesion, frizzled (FZD), and secretin (i.e., the GRAFS classification system) (Fig. 2) (11, 12).


G protein-coupled receptors in stem cell maintenance and somatic reprogramming to pluripotent or cancer stem cells.

Choi HY, Saha SK, Kim K, Kim S, Yang GM, Kim B, Kim JH, Cho SG - BMB Rep (2015)

Differential GPCRs and GPCR signaling, which may be involved in stem cell maintenance and/or during somatic reprogramming to iPSCs or CSCs. (A) The GPCR superfamily has traditionally been divided into three major families: class A/rhodopsin-like receptors, class B/secretin-like receptors, and class C/glutamate-like receptors. Recent bioinformatics analyses have updated the phylogenetic characterization to five distinct families: glutamate, rhodopsin, adhesion, frizzled and secretin (GRAFS classification system). (B) Various ligands bind GPCRs to stimulate various G proteins. GPCRs interact with heterotrimeric G proteins composed of α, β, and γ subunits that are guanosine diphosphate bound in the resting state. Most GPCRs activate one or multiple Gα proteins, which can be subdivided into four major families: Gαi, Gα12, Gαs, and Gαq. Ultimately, the integration of the functional activities of G protein-regulated signaling networks controls many cellular functions, and the aberrant activities of G proteins and their downstream target molecules can contribute to various cellular mechanisms, including roles in stem cell maintenance and somatic reprogramming to iPSCs or CSCs. (B) Activation of pluripotency and differentiation pathways by GPCRs.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4352616&req=5

Figure 002: Differential GPCRs and GPCR signaling, which may be involved in stem cell maintenance and/or during somatic reprogramming to iPSCs or CSCs. (A) The GPCR superfamily has traditionally been divided into three major families: class A/rhodopsin-like receptors, class B/secretin-like receptors, and class C/glutamate-like receptors. Recent bioinformatics analyses have updated the phylogenetic characterization to five distinct families: glutamate, rhodopsin, adhesion, frizzled and secretin (GRAFS classification system). (B) Various ligands bind GPCRs to stimulate various G proteins. GPCRs interact with heterotrimeric G proteins composed of α, β, and γ subunits that are guanosine diphosphate bound in the resting state. Most GPCRs activate one or multiple Gα proteins, which can be subdivided into four major families: Gαi, Gα12, Gαs, and Gαq. Ultimately, the integration of the functional activities of G protein-regulated signaling networks controls many cellular functions, and the aberrant activities of G proteins and their downstream target molecules can contribute to various cellular mechanisms, including roles in stem cell maintenance and somatic reprogramming to iPSCs or CSCs. (B) Activation of pluripotency and differentiation pathways by GPCRs.
Mentions: GPCRs bind and regulate the effects of 80% of all hormones in the body and account for 20-50% of the pharmaceuticals on the current market (9). Members of the GPCR superfamily have seven transmembrane (TM) domains as well as extracellular Nand cytosolic C-termini (10). The exact size of the GPCR superfamily is unknown, but nearly 800 GPCR genes comprise 3-5% of the human genome. The superfamily has traditionally been divided into three major families−class A/rhodopsin-like receptors, class B/secretin-like receptors, and class C/glutamate-like receptors. The largest class is class A, which accounts for almost 85% of the GPCR genes. Recent bioinformatics analyses have updated the phylogenetic characterization to five distinct families: glutamate, rhodopsin, adhesion, frizzled (FZD), and secretin (i.e., the GRAFS classification system) (Fig. 2) (11, 12).

Bottom Line: Several studies have also confirmed their central roles in embryonic development and stem cell maintenance.Our study and other reports have revealed that the expression of many GPCRs is modulated during the generation of induced PSCs (iPSCs) or CSCs as well as during CSC sphere formation.This review addresses the current understanding of the role of GPCRs in stem cell maintenance and somatic reprogramming to PSCs or CSCs.

View Article: PubMed Central - PubMed

Affiliation: Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 143-701, Korea.

ABSTRACT
G protein-coupled receptors (GPCRs) are a large class of transmembrane receptors categorized into five distinct families: rhodopsin, secretin, adhesion, glutamate, and frizzled. They bind and regulate 80% of all hormones and account for 20-50% of the pharmaceuticals currently on the market. Hundreds of GPCRs integrate and coordinate the functions of individual cells, mediating signaling between various organs. GPCRs are crucial players in tumor progression, adipogenesis, and inflammation. Several studies have also confirmed their central roles in embryonic development and stem cell maintenance. Recently, GPCRs have emerged as key players in the regulation of cell survival, proliferation, migration, and self-renewal in pluripotent (PSCs) and cancer stem cells (CSCs). Our study and other reports have revealed that the expression of many GPCRs is modulated during the generation of induced PSCs (iPSCs) or CSCs as well as during CSC sphere formation. These GPCRs may have crucial roles in the regulation of selfrenewal and other biological properties of iPSCs and CSCs. This review addresses the current understanding of the role of GPCRs in stem cell maintenance and somatic reprogramming to PSCs or CSCs.

Show MeSH
Related in: MedlinePlus