Limits...
TRAIL modulates the immune system and protects against the development of diabetes.

Bossi F, Bernardi S, Zauli G, Secchiero P, Fabris B - J Immunol Res (2015)

Bottom Line: TRAIL or tumor necrosis factor (TNF) related apoptosis-inducing ligand is a member of the TNF superfamily of proteins, whose best characterized function is the induction of apoptosis in tumor, infected, or transformed cells through activation of specific receptors.In nontransformed cells, however, the actions of TRAIL are less well characterized.Here we review TRAIL biological actions, its effects on the immune system, and how and to what extent it has been shown to protect against diabetes.

View Article: PubMed Central - PubMed

Affiliation: Department of Medical, Surgical, and Health Sciences, University of Trieste, Cattinara University Hospital, Strada di Fiume 447, 34100 Trieste, Italy.

ABSTRACT
TRAIL or tumor necrosis factor (TNF) related apoptosis-inducing ligand is a member of the TNF superfamily of proteins, whose best characterized function is the induction of apoptosis in tumor, infected, or transformed cells through activation of specific receptors. In nontransformed cells, however, the actions of TRAIL are less well characterized. Recent studies suggest that TRAIL may be implicated in the development and progression of diabetes. Here we review TRAIL biological actions, its effects on the immune system, and how and to what extent it has been shown to protect against diabetes.

Show MeSH

Related in: MedlinePlus

TRAIL-receptor mediated signalling pathways. By binding its receptor TRAIL initiates cell death (apoptosis) via either intrinsic (mitochondria) or extrinsic pathway and/or induces the activation of survival genes resulting in cell proliferation/migration and inhibition of apoptosis.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4352427&req=5

fig1: TRAIL-receptor mediated signalling pathways. By binding its receptor TRAIL initiates cell death (apoptosis) via either intrinsic (mitochondria) or extrinsic pathway and/or induces the activation of survival genes resulting in cell proliferation/migration and inhibition of apoptosis.

Mentions: For a single-cell organism, life with mutations is apparently better than no life at all, but in multicellular organisms the health of the organism takes precedence over the life of an individual cell and, thus, when cells are damaged, altered, or they become unnecessary, they do not continue division but instead “commit suicide” by undergoing apoptosis. Apoptosis is a process leading to cell death, whereby unrequired cells can be eliminated in order to safeguard multicellular organism health. There are two ways of signalling leading to apoptosis. One is called “intrinsic pathway,” because it is triggered by an intracellular signal, such as DNA damage, while the other is called “extrinsic pathway,” because it is triggered by an extracellular signal, which usually derives from cytotoxic cells of the immune system, as in Figure 1 [1]. In particular, the extrinsic pathway is activated upon the binding of specific proapoptotic ligands, namely, FasL/CD95L and tumor necrosis factor-α (TNF-α), to their transmembrane receptors. This stimulates the trimerization of the transmembrane receptors and the formation of the death-inducing signalling complex (DISC), based on the recruitment of Fas associated death domain (FADD). Subsequently, FADD recruits both caspase-8 and caspase-10, which undergo autoactivation by proteolytic cleavage and which in turn activate caspase-3, caspase-6, and caspase-7, eventually executing the apoptotic program (Figure 1).


TRAIL modulates the immune system and protects against the development of diabetes.

Bossi F, Bernardi S, Zauli G, Secchiero P, Fabris B - J Immunol Res (2015)

TRAIL-receptor mediated signalling pathways. By binding its receptor TRAIL initiates cell death (apoptosis) via either intrinsic (mitochondria) or extrinsic pathway and/or induces the activation of survival genes resulting in cell proliferation/migration and inhibition of apoptosis.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4352427&req=5

fig1: TRAIL-receptor mediated signalling pathways. By binding its receptor TRAIL initiates cell death (apoptosis) via either intrinsic (mitochondria) or extrinsic pathway and/or induces the activation of survival genes resulting in cell proliferation/migration and inhibition of apoptosis.
Mentions: For a single-cell organism, life with mutations is apparently better than no life at all, but in multicellular organisms the health of the organism takes precedence over the life of an individual cell and, thus, when cells are damaged, altered, or they become unnecessary, they do not continue division but instead “commit suicide” by undergoing apoptosis. Apoptosis is a process leading to cell death, whereby unrequired cells can be eliminated in order to safeguard multicellular organism health. There are two ways of signalling leading to apoptosis. One is called “intrinsic pathway,” because it is triggered by an intracellular signal, such as DNA damage, while the other is called “extrinsic pathway,” because it is triggered by an extracellular signal, which usually derives from cytotoxic cells of the immune system, as in Figure 1 [1]. In particular, the extrinsic pathway is activated upon the binding of specific proapoptotic ligands, namely, FasL/CD95L and tumor necrosis factor-α (TNF-α), to their transmembrane receptors. This stimulates the trimerization of the transmembrane receptors and the formation of the death-inducing signalling complex (DISC), based on the recruitment of Fas associated death domain (FADD). Subsequently, FADD recruits both caspase-8 and caspase-10, which undergo autoactivation by proteolytic cleavage and which in turn activate caspase-3, caspase-6, and caspase-7, eventually executing the apoptotic program (Figure 1).

Bottom Line: TRAIL or tumor necrosis factor (TNF) related apoptosis-inducing ligand is a member of the TNF superfamily of proteins, whose best characterized function is the induction of apoptosis in tumor, infected, or transformed cells through activation of specific receptors.In nontransformed cells, however, the actions of TRAIL are less well characterized.Here we review TRAIL biological actions, its effects on the immune system, and how and to what extent it has been shown to protect against diabetes.

View Article: PubMed Central - PubMed

Affiliation: Department of Medical, Surgical, and Health Sciences, University of Trieste, Cattinara University Hospital, Strada di Fiume 447, 34100 Trieste, Italy.

ABSTRACT
TRAIL or tumor necrosis factor (TNF) related apoptosis-inducing ligand is a member of the TNF superfamily of proteins, whose best characterized function is the induction of apoptosis in tumor, infected, or transformed cells through activation of specific receptors. In nontransformed cells, however, the actions of TRAIL are less well characterized. Recent studies suggest that TRAIL may be implicated in the development and progression of diabetes. Here we review TRAIL biological actions, its effects on the immune system, and how and to what extent it has been shown to protect against diabetes.

Show MeSH
Related in: MedlinePlus