Limits...
Very low birth weight piglets show improved cognitive performance in the spatial cognitive holeboard task.

Antonides A, Schoonderwoerd AC, Nordquist RE, van der Staay FJ - Front Behav Neurosci (2015)

Bottom Line: Low birth weight (LBW) is common in humans and has been found to cause lasting cognitive and developmental deficits later in life.In this study, we trained ten very low birth weight (vLBW) piglets and their ten normal birth weight (NBW) siblings in a spatial cognitive holeboard task in order to investigate long-term cognitive effects of LBW.These results could indicate that restricted intra-uterine growth causes compensatory mechanisms to arise in early development that result in beneficial effects for vLBW piglets, increasing their low survival chances in early-life competition.

View Article: PubMed Central - PubMed

Affiliation: Emotion and Cognition Group, Faculty of Veterinary Medicine, Department of Farm Animal Health, University Utrecht Netherlands ; Brain Center Rudolf Magnus, University Utrecht Netherlands.

ABSTRACT
Low birth weight (LBW) is common in humans and has been found to cause lasting cognitive and developmental deficits later in life. It is thought that the primary cause is intra-uterine growth restriction (IUGR) due to a shortage of oxygen and supply of nutrients to the fetus. Pigs appear to be a good model animal to investigate long-term cognitive effects of LBW, as LBW is common in commercially farmed breeds of pigs. Moreover, pigs are developmentally similar to humans and can be trained to perform complex tasks. In this study, we trained ten very low birth weight (vLBW) piglets and their ten normal birth weight (NBW) siblings in a spatial cognitive holeboard task in order to investigate long-term cognitive effects of LBW. In this task, four out of sixteen holes contain a hidden food reward, which allows measuring working memory (WM) (short-term memory) and reference memory (RM) (long-term memory) in parallel. Piglets were trained for 46-54 trials during the acquisition phase, followed by a 20-trial reversal phase in which a different set of four holes was baited. Both groups acquired the task and improved their performance over time. A mixed model repeated measures ANOVA revealed that vLBW piglets showed better RM performance than NBW piglets in both the acquisition and reversal phase. Additionally, WM scores in the vLBW were less disrupted than in the NBW animals when switched to the reversal phase. These findings are contrary to findings in humans. Moreover, vLBW pigs had lower hair cortisol concentrations (HCCs) than NBW pigs in flank hair at 12 weeks of age. These results could indicate that restricted intra-uterine growth causes compensatory mechanisms to arise in early development that result in beneficial effects for vLBW piglets, increasing their low survival chances in early-life competition.

No MeSH data available.


Related in: MedlinePlus

Weights and growth of the piglets. (A) The birth weights of the vLBW and NBW piglets in grams. (B) The body weight of the piglets in kilograms over the course of the experiment.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4343021&req=5

Figure 3: Weights and growth of the piglets. (A) The birth weights of the vLBW and NBW piglets in grams. (B) The body weight of the piglets in kilograms over the course of the experiment.

Mentions: The NBW piglets had on average a higher birth weight than the vLBW piglets (Figure 3A; t(9) = −10.70; p < 0.0001). Over the course of the experiment, the weight of the NBW group remained higher than that of the vLBW group (F(1,216) = 84.04; p = < 0.0001; see Figure 3B). Moreover, the vLBW piglets had a slower growth rate than the NBW piglets (F(12,216) = 2.57; p = 0.0033). The head size relative to the full body length on the day of birth did not differ between the groups (t(8) = 0.28; p = 0.782).


Very low birth weight piglets show improved cognitive performance in the spatial cognitive holeboard task.

Antonides A, Schoonderwoerd AC, Nordquist RE, van der Staay FJ - Front Behav Neurosci (2015)

Weights and growth of the piglets. (A) The birth weights of the vLBW and NBW piglets in grams. (B) The body weight of the piglets in kilograms over the course of the experiment.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4343021&req=5

Figure 3: Weights and growth of the piglets. (A) The birth weights of the vLBW and NBW piglets in grams. (B) The body weight of the piglets in kilograms over the course of the experiment.
Mentions: The NBW piglets had on average a higher birth weight than the vLBW piglets (Figure 3A; t(9) = −10.70; p < 0.0001). Over the course of the experiment, the weight of the NBW group remained higher than that of the vLBW group (F(1,216) = 84.04; p = < 0.0001; see Figure 3B). Moreover, the vLBW piglets had a slower growth rate than the NBW piglets (F(12,216) = 2.57; p = 0.0033). The head size relative to the full body length on the day of birth did not differ between the groups (t(8) = 0.28; p = 0.782).

Bottom Line: Low birth weight (LBW) is common in humans and has been found to cause lasting cognitive and developmental deficits later in life.In this study, we trained ten very low birth weight (vLBW) piglets and their ten normal birth weight (NBW) siblings in a spatial cognitive holeboard task in order to investigate long-term cognitive effects of LBW.These results could indicate that restricted intra-uterine growth causes compensatory mechanisms to arise in early development that result in beneficial effects for vLBW piglets, increasing their low survival chances in early-life competition.

View Article: PubMed Central - PubMed

Affiliation: Emotion and Cognition Group, Faculty of Veterinary Medicine, Department of Farm Animal Health, University Utrecht Netherlands ; Brain Center Rudolf Magnus, University Utrecht Netherlands.

ABSTRACT
Low birth weight (LBW) is common in humans and has been found to cause lasting cognitive and developmental deficits later in life. It is thought that the primary cause is intra-uterine growth restriction (IUGR) due to a shortage of oxygen and supply of nutrients to the fetus. Pigs appear to be a good model animal to investigate long-term cognitive effects of LBW, as LBW is common in commercially farmed breeds of pigs. Moreover, pigs are developmentally similar to humans and can be trained to perform complex tasks. In this study, we trained ten very low birth weight (vLBW) piglets and their ten normal birth weight (NBW) siblings in a spatial cognitive holeboard task in order to investigate long-term cognitive effects of LBW. In this task, four out of sixteen holes contain a hidden food reward, which allows measuring working memory (WM) (short-term memory) and reference memory (RM) (long-term memory) in parallel. Piglets were trained for 46-54 trials during the acquisition phase, followed by a 20-trial reversal phase in which a different set of four holes was baited. Both groups acquired the task and improved their performance over time. A mixed model repeated measures ANOVA revealed that vLBW piglets showed better RM performance than NBW piglets in both the acquisition and reversal phase. Additionally, WM scores in the vLBW were less disrupted than in the NBW animals when switched to the reversal phase. These findings are contrary to findings in humans. Moreover, vLBW pigs had lower hair cortisol concentrations (HCCs) than NBW pigs in flank hair at 12 weeks of age. These results could indicate that restricted intra-uterine growth causes compensatory mechanisms to arise in early development that result in beneficial effects for vLBW piglets, increasing their low survival chances in early-life competition.

No MeSH data available.


Related in: MedlinePlus