Limits...
Can minimally invasive puncture and drainage for hypertensive spontaneous Basal Ganglia intracerebral hemorrhage improve patient outcome: a prospective non-randomized comparative study.

Wang GQ, Li SQ, Huang YH, Zhang WW, Ruan WW, Qin JZ, Li Y, Yin WM, Li YJ, Ren ZJ, Zhu JQ, Ding YY, Peng JQ, Li PJ - Mil Med Res (2014)

Bottom Line: The cumulative mortalities at 30 days and 1 year were 32.3% and 43.4%, respectively, and there were no significant differences between groups A and B.Multivariate logistic regression analysis showed that a favorable outcome after 1 year was associated with the difference in therapies, age, GCS, HV, IVH and pulmonary infection (all P <0.05).For patients with hypertensive spontaneous ICH (HV≧30 mL in basal ganglia), MIPD may be a more effective treatment than DC, as assessed by a higher rate of functional independence at 1 year after onset as well as reduced mortality in patients ≦60 years of age, NIHSS < 15 or HV≦60 mL.

View Article: PubMed Central - PubMed

Affiliation: Department of Neurology, General Hospital of Beijing Command, Beijing, 100700 China.

ABSTRACT

Background: The treatment of hypertensive spontaneous intracranial hemorrhage (ICH) is still controversial. The purpose of the present study was to investigate whether minimally invasive puncture and drainage (MIPD) could improve patient outcome compared with decompressive craniectomy (DC).

Methods: Consecutive patients with ICH (≧30 mL in basal ganglia within 24 hours of ictus) were non-randomly assigned to receive MIPD (group A) or DC (group B) hematoma evacuation. The primary outcome was death at 30 days after onset. Functional independence was assessed at 1 year using the Glasgow Outcome Scale.

Results: A total of 198 patients met the per protocol analysis (84 in group A and 114 in group B). The initial Glasgow Coma Scale (GCS) score was 8.1 ± 3.4 and the National Institutes of Health Stroke Scale (NIHSS) score was 20.8 ± 5.3. The mean hematoma volume (HV) was 56.7 ± 23.0 mL, and there was extended intraventricular hemorrhage (IVH) in 134 patients. There were no significant intergroup differences in the above baseline data, except group A had a higher mean age than that of group B (59.4 ± 14.5 vs. 55.3 ± 11.1 years, P = 0.025). The cumulative mortalities at 30 days and 1 year were 32.3% and 43.4%, respectively, and there were no significant differences between groups A and B. However, the mortality for patients ≦60 years, NIHSS < 15 or HV≦60 mL was significantly lower in group A than that in group B (all P < 0.05). The cumulative functional independence at 1 year was 26.8%, and the difference between group A (33/84, 39.3%) and group B (20/114, 17.5%) was significant (P = 0.001). Multivariate logistic regression analysis showed that a favorable outcome after 1 year was associated with the difference in therapies, age, GCS, HV, IVH and pulmonary infection (all P <0.05).

Conclusions: For patients with hypertensive spontaneous ICH (HV≧30 mL in basal ganglia), MIPD may be a more effective treatment than DC, as assessed by a higher rate of functional independence at 1 year after onset as well as reduced mortality in patients ≦60 years of age, NIHSS < 15 or HV≦60 mL.

No MeSH data available.


Related in: MedlinePlus

Brain CT scan slice with the maximum hematoma area above the outer canthus-meatus line (OML) with the puncture point shown. A: brain CT. Extension lines from the center (C) of the hematoma vertically and horizontally outward to the frontal (F) scalp and temporal puncture (P) point are represented by CF and CP, respectively. Here, CF is parallel to the median sagittal line (M), and CP is perpendicular to CF. P is the puncture point. Puncture depth is the distance between C and P. B: a diagram of the puncture point on the body surface. Here, the distance from F to P is equal to the CF line and parallel to the OML. The vertical length from the OML to P on the body surface is equal to the height (mm) from the OML to the maximum hematoma slice on the CT film.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4340857&req=5

Fig1: Brain CT scan slice with the maximum hematoma area above the outer canthus-meatus line (OML) with the puncture point shown. A: brain CT. Extension lines from the center (C) of the hematoma vertically and horizontally outward to the frontal (F) scalp and temporal puncture (P) point are represented by CF and CP, respectively. Here, CF is parallel to the median sagittal line (M), and CP is perpendicular to CF. P is the puncture point. Puncture depth is the distance between C and P. B: a diagram of the puncture point on the body surface. Here, the distance from F to P is equal to the CF line and parallel to the OML. The vertical length from the OML to P on the body surface is equal to the height (mm) from the OML to the maximum hematoma slice on the CT film.

Mentions: Patients in group A underwent MIPD as follows: 1) The body surface puncture site of the hematoma was determined based on the maximum hematoma slice on the CT film (Figure 1), avoiding major vessels and important functional areas. 2) A YL-I puncture needle (Beijing WanTeFu Medical Apparatus Co., Ltd. http://www.bjwtf.com/en) was used; the length (mm) of the selected needle matched with the depth from the temporal scalp to the hematoma center. 3) After local anesthesia, the needle was drilled into the center of the hematoma via the surface localization puncture point, perpendicularly to the sagittal plane. 4) The drill bit of the needle was removed and a drainage tube was connected to the side hole of the needle. A 5-mL syringe was connected to the other end of the tube, and uncoagulated blood was gently aspirated. 5) The hematoma cavity was rinsed with saline through an ancillary washing needle. 6) Urokinase (10000 U)/saline (3 mL) was infused into the clot, which was bathed for 1 hour and then drained into a closed collection bag. 7) A follow-up CT scan was obtained 12–24 hours after MIPD. Step 6 was repeated if residual blood remained, until the hemorrhage was completely removed or until the remaining HV was less than 10 mL (2–7 days were generally required). Subsequently, the puncture needle was removed and the puncture site was bandaged for 5–7 days. If severe IVH was present, lateral ventricular external drainage was performed just after step 6.Figure 1


Can minimally invasive puncture and drainage for hypertensive spontaneous Basal Ganglia intracerebral hemorrhage improve patient outcome: a prospective non-randomized comparative study.

Wang GQ, Li SQ, Huang YH, Zhang WW, Ruan WW, Qin JZ, Li Y, Yin WM, Li YJ, Ren ZJ, Zhu JQ, Ding YY, Peng JQ, Li PJ - Mil Med Res (2014)

Brain CT scan slice with the maximum hematoma area above the outer canthus-meatus line (OML) with the puncture point shown. A: brain CT. Extension lines from the center (C) of the hematoma vertically and horizontally outward to the frontal (F) scalp and temporal puncture (P) point are represented by CF and CP, respectively. Here, CF is parallel to the median sagittal line (M), and CP is perpendicular to CF. P is the puncture point. Puncture depth is the distance between C and P. B: a diagram of the puncture point on the body surface. Here, the distance from F to P is equal to the CF line and parallel to the OML. The vertical length from the OML to P on the body surface is equal to the height (mm) from the OML to the maximum hematoma slice on the CT film.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4340857&req=5

Fig1: Brain CT scan slice with the maximum hematoma area above the outer canthus-meatus line (OML) with the puncture point shown. A: brain CT. Extension lines from the center (C) of the hematoma vertically and horizontally outward to the frontal (F) scalp and temporal puncture (P) point are represented by CF and CP, respectively. Here, CF is parallel to the median sagittal line (M), and CP is perpendicular to CF. P is the puncture point. Puncture depth is the distance between C and P. B: a diagram of the puncture point on the body surface. Here, the distance from F to P is equal to the CF line and parallel to the OML. The vertical length from the OML to P on the body surface is equal to the height (mm) from the OML to the maximum hematoma slice on the CT film.
Mentions: Patients in group A underwent MIPD as follows: 1) The body surface puncture site of the hematoma was determined based on the maximum hematoma slice on the CT film (Figure 1), avoiding major vessels and important functional areas. 2) A YL-I puncture needle (Beijing WanTeFu Medical Apparatus Co., Ltd. http://www.bjwtf.com/en) was used; the length (mm) of the selected needle matched with the depth from the temporal scalp to the hematoma center. 3) After local anesthesia, the needle was drilled into the center of the hematoma via the surface localization puncture point, perpendicularly to the sagittal plane. 4) The drill bit of the needle was removed and a drainage tube was connected to the side hole of the needle. A 5-mL syringe was connected to the other end of the tube, and uncoagulated blood was gently aspirated. 5) The hematoma cavity was rinsed with saline through an ancillary washing needle. 6) Urokinase (10000 U)/saline (3 mL) was infused into the clot, which was bathed for 1 hour and then drained into a closed collection bag. 7) A follow-up CT scan was obtained 12–24 hours after MIPD. Step 6 was repeated if residual blood remained, until the hemorrhage was completely removed or until the remaining HV was less than 10 mL (2–7 days were generally required). Subsequently, the puncture needle was removed and the puncture site was bandaged for 5–7 days. If severe IVH was present, lateral ventricular external drainage was performed just after step 6.Figure 1

Bottom Line: The cumulative mortalities at 30 days and 1 year were 32.3% and 43.4%, respectively, and there were no significant differences between groups A and B.Multivariate logistic regression analysis showed that a favorable outcome after 1 year was associated with the difference in therapies, age, GCS, HV, IVH and pulmonary infection (all P <0.05).For patients with hypertensive spontaneous ICH (HV≧30 mL in basal ganglia), MIPD may be a more effective treatment than DC, as assessed by a higher rate of functional independence at 1 year after onset as well as reduced mortality in patients ≦60 years of age, NIHSS < 15 or HV≦60 mL.

View Article: PubMed Central - PubMed

Affiliation: Department of Neurology, General Hospital of Beijing Command, Beijing, 100700 China.

ABSTRACT

Background: The treatment of hypertensive spontaneous intracranial hemorrhage (ICH) is still controversial. The purpose of the present study was to investigate whether minimally invasive puncture and drainage (MIPD) could improve patient outcome compared with decompressive craniectomy (DC).

Methods: Consecutive patients with ICH (≧30 mL in basal ganglia within 24 hours of ictus) were non-randomly assigned to receive MIPD (group A) or DC (group B) hematoma evacuation. The primary outcome was death at 30 days after onset. Functional independence was assessed at 1 year using the Glasgow Outcome Scale.

Results: A total of 198 patients met the per protocol analysis (84 in group A and 114 in group B). The initial Glasgow Coma Scale (GCS) score was 8.1 ± 3.4 and the National Institutes of Health Stroke Scale (NIHSS) score was 20.8 ± 5.3. The mean hematoma volume (HV) was 56.7 ± 23.0 mL, and there was extended intraventricular hemorrhage (IVH) in 134 patients. There were no significant intergroup differences in the above baseline data, except group A had a higher mean age than that of group B (59.4 ± 14.5 vs. 55.3 ± 11.1 years, P = 0.025). The cumulative mortalities at 30 days and 1 year were 32.3% and 43.4%, respectively, and there were no significant differences between groups A and B. However, the mortality for patients ≦60 years, NIHSS < 15 or HV≦60 mL was significantly lower in group A than that in group B (all P < 0.05). The cumulative functional independence at 1 year was 26.8%, and the difference between group A (33/84, 39.3%) and group B (20/114, 17.5%) was significant (P = 0.001). Multivariate logistic regression analysis showed that a favorable outcome after 1 year was associated with the difference in therapies, age, GCS, HV, IVH and pulmonary infection (all P <0.05).

Conclusions: For patients with hypertensive spontaneous ICH (HV≧30 mL in basal ganglia), MIPD may be a more effective treatment than DC, as assessed by a higher rate of functional independence at 1 year after onset as well as reduced mortality in patients ≦60 years of age, NIHSS < 15 or HV≦60 mL.

No MeSH data available.


Related in: MedlinePlus