Limits...
Small but powerful: top predator local extinction affects ecosystem structure and function in an intermittent stream.

Rodríguez-Lozano P, Verkaik I, Rieradevall M, Prat N - PLoS ONE (2015)

Bottom Line: We found that top predator absence led to 'mesopredator release', and also to 'prey release' despite intraguild predation, which contrasts with traditional food web theory.Regarding ecosystem function, periphyton primary production decreased in apex consumer absence.In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem's structure and function.

View Article: PubMed Central - PubMed

Affiliation: Freshwater Ecology and Management (F.E.M.) Research Group, Departament d'Ecologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.

ABSTRACT
Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators' extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1) leads to a 'mesopredator release', affects primary consumers and changes whole community structures, and (2) triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the top-down effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel), conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire. We found that top predator absence led to 'mesopredator release', and also to 'prey release' despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem's structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers' extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been extirpated, to restore ecosystem structure and function.

Show MeSH

Related in: MedlinePlus

Diagram of the trophic interactions in intermittent stream food webs in the presence and absence of the apex consumer.This diagram describes our two hypotheses related to apex consumer extirpation: a) ‘prey release’ hypothesis and b) ‘mesopredator release’ hypothesis. Circumference size in top predator absence diagrams represents the density decrease, increase or persistence compared to the top predator presence diagram. Arrows represent trophic interactions. Thicker arrows = magnified trophic interactions due to apex consumer extirpation; grey arrows = lost trophic interactions after apex consumer extirpation.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4340793&req=5

pone.0117630.g001: Diagram of the trophic interactions in intermittent stream food webs in the presence and absence of the apex consumer.This diagram describes our two hypotheses related to apex consumer extirpation: a) ‘prey release’ hypothesis and b) ‘mesopredator release’ hypothesis. Circumference size in top predator absence diagrams represents the density decrease, increase or persistence compared to the top predator presence diagram. Arrows represent trophic interactions. Thicker arrows = magnified trophic interactions due to apex consumer extirpation; grey arrows = lost trophic interactions after apex consumer extirpation.

Mentions: The objective of our research was to determine if the loss of an endangered apex consumer from an intermittent stream would result in major changes to ecosystem structure and function. Barbus meridionalis (A. Risso, 1827), also known as the Mediterranean barbel, is an endemic small-bodied fish in the Mediterranean intermittent streams of Spain and France, and often act as apex consumer in these ecosystems. This species is considered ‘vulnerable’ in the Spanish Red Book and ‘near threatened’ internationally. We studied the top-down impacts of B. meridionalis to determine if the loss of the top predator (1) leads to a ‘mesopredator release’, affecting primary consumers and changing whole community structure, and (2) triggers a cascade effect modifying ecosystem function (i.e., periphyton primary production). Barbus meridionalis has been classified as an insectivore benthic species [36] that feeds primarily on chironomid larvae, detritus (which could be explained by its benthic feeding behaviour), mayflies and isopods (mainly primary consumers [37]). Thus, apex consumer extirpation might not lead to ‘mesopredator release’, and instead could promote a trophic cascade resulting in ‘prey release’ and lower primary production (i.e., ‘prey release’ hypothesis, see Fig. 1A). Alternatively, B. meridionalis could feed on two trophic levels (i.e., macroinvertebrate secondary and primary consumers), in which case top predator removal would trigger a ‘mesopredator release’ due to IGP. According to IGP theory, ‘mesopredator release’ could compensate apex consumer extirpation in terms of prey top-down control, and the trophic cascade would be dampened with no impact on prey or primary production (i.e., ‘mesopredator release’ hypothesis, see Fig. 1B). To address these questions, we performed a field experiment using enclosure/exclosure mesocosms in a Mediterranean stream where B. meridionalis became locally extinct following a wildfire.


Small but powerful: top predator local extinction affects ecosystem structure and function in an intermittent stream.

Rodríguez-Lozano P, Verkaik I, Rieradevall M, Prat N - PLoS ONE (2015)

Diagram of the trophic interactions in intermittent stream food webs in the presence and absence of the apex consumer.This diagram describes our two hypotheses related to apex consumer extirpation: a) ‘prey release’ hypothesis and b) ‘mesopredator release’ hypothesis. Circumference size in top predator absence diagrams represents the density decrease, increase or persistence compared to the top predator presence diagram. Arrows represent trophic interactions. Thicker arrows = magnified trophic interactions due to apex consumer extirpation; grey arrows = lost trophic interactions after apex consumer extirpation.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4340793&req=5

pone.0117630.g001: Diagram of the trophic interactions in intermittent stream food webs in the presence and absence of the apex consumer.This diagram describes our two hypotheses related to apex consumer extirpation: a) ‘prey release’ hypothesis and b) ‘mesopredator release’ hypothesis. Circumference size in top predator absence diagrams represents the density decrease, increase or persistence compared to the top predator presence diagram. Arrows represent trophic interactions. Thicker arrows = magnified trophic interactions due to apex consumer extirpation; grey arrows = lost trophic interactions after apex consumer extirpation.
Mentions: The objective of our research was to determine if the loss of an endangered apex consumer from an intermittent stream would result in major changes to ecosystem structure and function. Barbus meridionalis (A. Risso, 1827), also known as the Mediterranean barbel, is an endemic small-bodied fish in the Mediterranean intermittent streams of Spain and France, and often act as apex consumer in these ecosystems. This species is considered ‘vulnerable’ in the Spanish Red Book and ‘near threatened’ internationally. We studied the top-down impacts of B. meridionalis to determine if the loss of the top predator (1) leads to a ‘mesopredator release’, affecting primary consumers and changing whole community structure, and (2) triggers a cascade effect modifying ecosystem function (i.e., periphyton primary production). Barbus meridionalis has been classified as an insectivore benthic species [36] that feeds primarily on chironomid larvae, detritus (which could be explained by its benthic feeding behaviour), mayflies and isopods (mainly primary consumers [37]). Thus, apex consumer extirpation might not lead to ‘mesopredator release’, and instead could promote a trophic cascade resulting in ‘prey release’ and lower primary production (i.e., ‘prey release’ hypothesis, see Fig. 1A). Alternatively, B. meridionalis could feed on two trophic levels (i.e., macroinvertebrate secondary and primary consumers), in which case top predator removal would trigger a ‘mesopredator release’ due to IGP. According to IGP theory, ‘mesopredator release’ could compensate apex consumer extirpation in terms of prey top-down control, and the trophic cascade would be dampened with no impact on prey or primary production (i.e., ‘mesopredator release’ hypothesis, see Fig. 1B). To address these questions, we performed a field experiment using enclosure/exclosure mesocosms in a Mediterranean stream where B. meridionalis became locally extinct following a wildfire.

Bottom Line: We found that top predator absence led to 'mesopredator release', and also to 'prey release' despite intraguild predation, which contrasts with traditional food web theory.Regarding ecosystem function, periphyton primary production decreased in apex consumer absence.In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem's structure and function.

View Article: PubMed Central - PubMed

Affiliation: Freshwater Ecology and Management (F.E.M.) Research Group, Departament d'Ecologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.

ABSTRACT
Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators' extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1) leads to a 'mesopredator release', affects primary consumers and changes whole community structures, and (2) triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the top-down effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel), conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire. We found that top predator absence led to 'mesopredator release', and also to 'prey release' despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem's structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers' extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been extirpated, to restore ecosystem structure and function.

Show MeSH
Related in: MedlinePlus