Limits...
Sleep and multisystem biological risk: a population-based study.

Carroll JE, Irwin MR, Stein Merkin S, Seeman TE - PLoS ONE (2015)

Bottom Line: Linear mixed effect models adjusting for age, gender, race, education, income, BMI, and health status were performed.Poor quality sleep alone was associated with elevated multisystem biological risk (B(SE) = .15(.06), p = .01), but was not significant after adjustment for health status.Physicians should inquire about sleep health in the assessment of lifestyle factors related to disease risk, with evidence that healthy sleep is associated with lower multisystem biological risk.

View Article: PubMed Central - PubMed

Affiliation: Cousins Center for Psychoneuroimmunology, Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America.

ABSTRACT

Background: Short sleep and poor sleep quality are associated with risk of cardiovascular disease, diabetes, cancer, and mortality. This study examines the contribution of sleep duration and sleep quality on a multisystem biological risk index that is known to be associated with morbidity and mortality.

Methods: Analyses include a population-based sample from the Midlife Development in the United States survey recruited to the Biomarker substudy. A total of 1,023 participants aged 54.5 years (SD = 11.8), 56% female and 77.6% white, were included in the analyses. A multisystem biological risk index was derived from 22 biomarkers capturing cardiovascular, immune, lipid-metabolic, glucose-metabolic, sympathetic, parasympathetic, and hypothalamic-pituitary-adrenal systems. Self-reported average sleep duration was categorized as short (<5 hrs), below normal (5 to <6.5 hrs), normal (6.5 to <8.5 hrs), and long sleepers (8.5+ hrs). Sleep quality was determined using the Pittsburgh Sleep Quality Index categorized as normal (≤5) and poor quality (>5) sleep.

Findings: Linear mixed effect models adjusting for age, gender, race, education, income, BMI, and health status were performed. As compared to normal sleepers, multisystem biological risk in both short (B(SE) = .38(.15), p<.01) and long sleepers (B(SE) = .28(.11), p<.01) were elevated. Poor quality sleep alone was associated with elevated multisystem biological risk (B(SE) = .15(.06), p = .01), but was not significant after adjustment for health status. All short sleepers reported poor sleep quality. However in the long sleepers, only those who reported poor sleep quality exhibited elevated multisystem biological risk (B(SE) = .93(.3), p = .002).

Conclusions: Self-reported poor sleep quality with either short or long sleep duration is associated with dysregulation in physiological set points across regulatory systems, leading to elevated multisystem biological risk. Physicians should inquire about sleep health in the assessment of lifestyle factors related to disease risk, with evidence that healthy sleep is associated with lower multisystem biological risk.

Show MeSH

Related in: MedlinePlus

Estimated mean and standard error of multisystem biological risk by sleep duration and quality.Mean and standard error estimates derived from model after adjustments by age, gender, race, BMI, education, income poverty ratio, chronic conditions, and self-evaluated physical health. Multisystem Biological Risk score ranged from 0–7.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4340787&req=5

pone.0118467.g002: Estimated mean and standard error of multisystem biological risk by sleep duration and quality.Mean and standard error estimates derived from model after adjustments by age, gender, race, BMI, education, income poverty ratio, chronic conditions, and self-evaluated physical health. Multisystem Biological Risk score ranged from 0–7.

Mentions: To examine whether the elevated multisystem biological risk differed in long sleepers who reported either normal or poor sleep quality, we stratified the long sleep duration group (n = 86) on the basis of sleep quality scores. As compared to long sleepers with normal sleep quality, long sleepers reporting poor sleep quality had significantly elevated multisystem biological risk, B(SE) = .93(.3), p = .002 after adjustment for sociodemographic factors, and remained significant after adjustment for health status (B(SE) = .79(.3), p = .009). Fig. 2 displays the adjusted means within sleep quality group by sleep duration categories. Secondary mixed linear effect analyses selecting only those cases reporting normal quality sleep demonstrated that long sleep duration compared to normal sleep duration was not associated with elevated multisystem risk among individuals reporting normal quality sleep (B(SE) = .17(.12), p = .14).


Sleep and multisystem biological risk: a population-based study.

Carroll JE, Irwin MR, Stein Merkin S, Seeman TE - PLoS ONE (2015)

Estimated mean and standard error of multisystem biological risk by sleep duration and quality.Mean and standard error estimates derived from model after adjustments by age, gender, race, BMI, education, income poverty ratio, chronic conditions, and self-evaluated physical health. Multisystem Biological Risk score ranged from 0–7.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4340787&req=5

pone.0118467.g002: Estimated mean and standard error of multisystem biological risk by sleep duration and quality.Mean and standard error estimates derived from model after adjustments by age, gender, race, BMI, education, income poverty ratio, chronic conditions, and self-evaluated physical health. Multisystem Biological Risk score ranged from 0–7.
Mentions: To examine whether the elevated multisystem biological risk differed in long sleepers who reported either normal or poor sleep quality, we stratified the long sleep duration group (n = 86) on the basis of sleep quality scores. As compared to long sleepers with normal sleep quality, long sleepers reporting poor sleep quality had significantly elevated multisystem biological risk, B(SE) = .93(.3), p = .002 after adjustment for sociodemographic factors, and remained significant after adjustment for health status (B(SE) = .79(.3), p = .009). Fig. 2 displays the adjusted means within sleep quality group by sleep duration categories. Secondary mixed linear effect analyses selecting only those cases reporting normal quality sleep demonstrated that long sleep duration compared to normal sleep duration was not associated with elevated multisystem risk among individuals reporting normal quality sleep (B(SE) = .17(.12), p = .14).

Bottom Line: Linear mixed effect models adjusting for age, gender, race, education, income, BMI, and health status were performed.Poor quality sleep alone was associated with elevated multisystem biological risk (B(SE) = .15(.06), p = .01), but was not significant after adjustment for health status.Physicians should inquire about sleep health in the assessment of lifestyle factors related to disease risk, with evidence that healthy sleep is associated with lower multisystem biological risk.

View Article: PubMed Central - PubMed

Affiliation: Cousins Center for Psychoneuroimmunology, Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America.

ABSTRACT

Background: Short sleep and poor sleep quality are associated with risk of cardiovascular disease, diabetes, cancer, and mortality. This study examines the contribution of sleep duration and sleep quality on a multisystem biological risk index that is known to be associated with morbidity and mortality.

Methods: Analyses include a population-based sample from the Midlife Development in the United States survey recruited to the Biomarker substudy. A total of 1,023 participants aged 54.5 years (SD = 11.8), 56% female and 77.6% white, were included in the analyses. A multisystem biological risk index was derived from 22 biomarkers capturing cardiovascular, immune, lipid-metabolic, glucose-metabolic, sympathetic, parasympathetic, and hypothalamic-pituitary-adrenal systems. Self-reported average sleep duration was categorized as short (<5 hrs), below normal (5 to <6.5 hrs), normal (6.5 to <8.5 hrs), and long sleepers (8.5+ hrs). Sleep quality was determined using the Pittsburgh Sleep Quality Index categorized as normal (≤5) and poor quality (>5) sleep.

Findings: Linear mixed effect models adjusting for age, gender, race, education, income, BMI, and health status were performed. As compared to normal sleepers, multisystem biological risk in both short (B(SE) = .38(.15), p<.01) and long sleepers (B(SE) = .28(.11), p<.01) were elevated. Poor quality sleep alone was associated with elevated multisystem biological risk (B(SE) = .15(.06), p = .01), but was not significant after adjustment for health status. All short sleepers reported poor sleep quality. However in the long sleepers, only those who reported poor sleep quality exhibited elevated multisystem biological risk (B(SE) = .93(.3), p = .002).

Conclusions: Self-reported poor sleep quality with either short or long sleep duration is associated with dysregulation in physiological set points across regulatory systems, leading to elevated multisystem biological risk. Physicians should inquire about sleep health in the assessment of lifestyle factors related to disease risk, with evidence that healthy sleep is associated with lower multisystem biological risk.

Show MeSH
Related in: MedlinePlus