Limits...
Dynamic integration of biological data sources using the data concierge.

Gong P - Health Inf Sci Syst (2013)

Bottom Line: Experimental results demonstrate that for obtaining dynamic features, the Data Concierge sacrifices reasonable performance on reasoning knowledge models and dynamically doing data source API invocations.The overall costs to integrate new biological data sources are significantly lower when using the Data Concierge.The Data Concierge facilitates the rapid integration of new biological data sources in existing applications with no repetitive software development required, and hence, this mechanism would provide a cost-effective solution to the labor-intensive software engineering tasks.

View Article: PubMed Central - PubMed

Affiliation: Biomedical and Multimedia Information Technology (BMIT) Research Group, School of Information Technologies, the University of Sydney, Sydney, NSW 2006 Australia ; Department of PET and Nuclear Medicine, RPA Hospital, Camperdown, NSW 2050 Australia.

ABSTRACT

Background: The ever-changing landscape of large-scale network environments and innovative biology technologies require dynamic mechanisms to rapidly integrate previously unknown bioinformatics sources at runtime. However, existing integration technologies lack sufficient flexibility to adapt to these changes, because the techniques used for integration are static, and sensitive to new or changing bioinformatics source implementations and evolutionary biologist requirements.

Methods: To address this challenge, in this paper we propose a new semantics-based adaptive middleware, the Data Concierge, which is able to dynamically integrate heterogeneous biological data sources without the need for wrappers. Along with the architecture necessary to facilitate dynamic integration, API description mechanism is proposed to dynamically classify, recognize, locate, and invoke newly added biological data source functionalities. Based on the unified semantic metadata, XML-based state machines are able to provide flexible configurations to execute biologist's abstract and complex operations.

Results and discussion: Experimental results demonstrate that for obtaining dynamic features, the Data Concierge sacrifices reasonable performance on reasoning knowledge models and dynamically doing data source API invocations. The overall costs to integrate new biological data sources are significantly lower when using the Data Concierge.

Conclusions: The Data Concierge facilitates the rapid integration of new biological data sources in existing applications with no repetitive software development required, and hence, this mechanism would provide a cost-effective solution to the labor-intensive software engineering tasks.

No MeSH data available.


Performance results for DCS API operations.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4340781&req=5

Fig22: Performance results for DCS API operations.

Mentions: Figure 22 illustrates that executing complex DCS API operations adds approximately 700~900ms overhead on their performance. This extra overhead is due to network message exchanges between Data Concierge Web Service and Generic Adapter Interface as well as loading and executing state machine models. A mechanism which can dynamically manage network communication and preload state machine models needs to be investigated in our future work, which would significantly reduce the overhead and improve the Data Concierge performance.Figure 22


Dynamic integration of biological data sources using the data concierge.

Gong P - Health Inf Sci Syst (2013)

Performance results for DCS API operations.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4340781&req=5

Fig22: Performance results for DCS API operations.
Mentions: Figure 22 illustrates that executing complex DCS API operations adds approximately 700~900ms overhead on their performance. This extra overhead is due to network message exchanges between Data Concierge Web Service and Generic Adapter Interface as well as loading and executing state machine models. A mechanism which can dynamically manage network communication and preload state machine models needs to be investigated in our future work, which would significantly reduce the overhead and improve the Data Concierge performance.Figure 22

Bottom Line: Experimental results demonstrate that for obtaining dynamic features, the Data Concierge sacrifices reasonable performance on reasoning knowledge models and dynamically doing data source API invocations.The overall costs to integrate new biological data sources are significantly lower when using the Data Concierge.The Data Concierge facilitates the rapid integration of new biological data sources in existing applications with no repetitive software development required, and hence, this mechanism would provide a cost-effective solution to the labor-intensive software engineering tasks.

View Article: PubMed Central - PubMed

Affiliation: Biomedical and Multimedia Information Technology (BMIT) Research Group, School of Information Technologies, the University of Sydney, Sydney, NSW 2006 Australia ; Department of PET and Nuclear Medicine, RPA Hospital, Camperdown, NSW 2050 Australia.

ABSTRACT

Background: The ever-changing landscape of large-scale network environments and innovative biology technologies require dynamic mechanisms to rapidly integrate previously unknown bioinformatics sources at runtime. However, existing integration technologies lack sufficient flexibility to adapt to these changes, because the techniques used for integration are static, and sensitive to new or changing bioinformatics source implementations and evolutionary biologist requirements.

Methods: To address this challenge, in this paper we propose a new semantics-based adaptive middleware, the Data Concierge, which is able to dynamically integrate heterogeneous biological data sources without the need for wrappers. Along with the architecture necessary to facilitate dynamic integration, API description mechanism is proposed to dynamically classify, recognize, locate, and invoke newly added biological data source functionalities. Based on the unified semantic metadata, XML-based state machines are able to provide flexible configurations to execute biologist's abstract and complex operations.

Results and discussion: Experimental results demonstrate that for obtaining dynamic features, the Data Concierge sacrifices reasonable performance on reasoning knowledge models and dynamically doing data source API invocations. The overall costs to integrate new biological data sources are significantly lower when using the Data Concierge.

Conclusions: The Data Concierge facilitates the rapid integration of new biological data sources in existing applications with no repetitive software development required, and hence, this mechanism would provide a cost-effective solution to the labor-intensive software engineering tasks.

No MeSH data available.