Limits...
Phenotypic responses of differentiated asthmatic human airway epithelial cultures to rhinovirus.

Bai J, Smock SL, Jackson GR, MacIsaac KD, Huang Y, Mankus C, Oldach J, Roberts B, Ma YL, Klappenbach JA, Crackower MA, Alves SE, Hayden PJ - PLoS ONE (2015)

Bottom Line: The effects of rhinovirus RV-A16 on ALI cultures were compared.ALI cultures were readily infected by HRV.These genes are related to inflammatory pathways, epithelial structure and remodeling and cilium assembly and function, including those described previously (e.g. CCL5, CXCL10 and CX3CL1, MUC5AC, CDHR3), and novel ones that were identified for the first time in this study (e.g. CCRL1).

View Article: PubMed Central - PubMed

Affiliation: Merck Research Laboratories, Boston, Massachusetts, United States of America.

ABSTRACT

Objectives: Human airway epithelial cells are the principal target of human rhinovirus (HRV), a common cold pathogen that triggers the majority of asthma exacerbations. The objectives of this study were 1) to evaluate an in vitro air liquid interface cultured human airway epithelial cell model for HRV infection, and 2) to identify gene expression patterns associated with asthma intrinsically and/or after HRV infection using this model.

Methods: Air-liquid interface (ALI) human airway epithelial cell cultures were prepared from 6 asthmatic and 6 non-asthmatic donors. The effects of rhinovirus RV-A16 on ALI cultures were compared. Genome-wide gene expression changes in ALI cultures following HRV infection at 24 hours post exposure were further analyzed using RNA-seq technology. Cellular gene expression and cytokine/chemokine secretion were further evaluated by qPCR and a Luminex-based protein assay, respectively.

Main results: ALI cultures were readily infected by HRV. RNA-seq analysis of HRV infected ALI cultures identified sets of genes associated with asthma specific viral responses. These genes are related to inflammatory pathways, epithelial structure and remodeling and cilium assembly and function, including those described previously (e.g. CCL5, CXCL10 and CX3CL1, MUC5AC, CDHR3), and novel ones that were identified for the first time in this study (e.g. CCRL1).

Conclusions: ALI-cultured human airway epithelial cells challenged with HRV are a useful translational model for the study of HRV-induced responses in airway epithelial cells, given that gene expression profile using this model largely recapitulates some important patterns of gene responses in patients during clinical HRV infection. Furthermore, our data emphasize that both abnormal airway epithelial structure and inflammatory signaling are two important asthma signatures, which can be further exacerbated by HRV infection.

Show MeSH

Related in: MedlinePlus

Expression of secreted cytokines/chemokines in culture medium.16/42 cytokines tested had robust expression levels and were significantly up-regulated at 24 hr after RV-A16 infection across 12 donors (p value<0.05). Differences were not significant between asthma and non-asthma groups (p>0.05). Red lines represent asthma samples, blue lines represent non-asthma samples. Each line represents the mean and standard deviation of log2 concentration of each cytokine/chemokine.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4338293&req=5

pone.0118286.g005: Expression of secreted cytokines/chemokines in culture medium.16/42 cytokines tested had robust expression levels and were significantly up-regulated at 24 hr after RV-A16 infection across 12 donors (p value<0.05). Differences were not significant between asthma and non-asthma groups (p>0.05). Red lines represent asthma samples, blue lines represent non-asthma samples. Each line represents the mean and standard deviation of log2 concentration of each cytokine/chemokine.

Mentions: To compare protein expression of common cytokines and chemokines induced by HRV between asthmatic and non-asthmatic cells, we measured their expression level in culture medium using a Luminex 42-plex assay. The expression level of 3 analytes (EGF, FGF2, and IL4) was below detection, and 7 analytes (GMCSF, GRO, IL15, IL1beta, IL3, PDGRA and VEGF) were not significantly induced by RV-A16. Thus, these proteins were not included in further analysis. Thirty-two cytokines/chemokines showed significant expression changes upon viral infection (S7 Dataset), among which 16 analytes had robust expression levels (Fig. 5). However, none of them showed any difference between asthmatic and non-asthmatic cells (S7 Dataset). Generally, there is a good agreement between proteins and their corresponding genes in terms of their expression change directions (i.e. proteins up-regulated by HRV tend to be up-regulated at the mRNA level).


Phenotypic responses of differentiated asthmatic human airway epithelial cultures to rhinovirus.

Bai J, Smock SL, Jackson GR, MacIsaac KD, Huang Y, Mankus C, Oldach J, Roberts B, Ma YL, Klappenbach JA, Crackower MA, Alves SE, Hayden PJ - PLoS ONE (2015)

Expression of secreted cytokines/chemokines in culture medium.16/42 cytokines tested had robust expression levels and were significantly up-regulated at 24 hr after RV-A16 infection across 12 donors (p value<0.05). Differences were not significant between asthma and non-asthma groups (p>0.05). Red lines represent asthma samples, blue lines represent non-asthma samples. Each line represents the mean and standard deviation of log2 concentration of each cytokine/chemokine.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4338293&req=5

pone.0118286.g005: Expression of secreted cytokines/chemokines in culture medium.16/42 cytokines tested had robust expression levels and were significantly up-regulated at 24 hr after RV-A16 infection across 12 donors (p value<0.05). Differences were not significant between asthma and non-asthma groups (p>0.05). Red lines represent asthma samples, blue lines represent non-asthma samples. Each line represents the mean and standard deviation of log2 concentration of each cytokine/chemokine.
Mentions: To compare protein expression of common cytokines and chemokines induced by HRV between asthmatic and non-asthmatic cells, we measured their expression level in culture medium using a Luminex 42-plex assay. The expression level of 3 analytes (EGF, FGF2, and IL4) was below detection, and 7 analytes (GMCSF, GRO, IL15, IL1beta, IL3, PDGRA and VEGF) were not significantly induced by RV-A16. Thus, these proteins were not included in further analysis. Thirty-two cytokines/chemokines showed significant expression changes upon viral infection (S7 Dataset), among which 16 analytes had robust expression levels (Fig. 5). However, none of them showed any difference between asthmatic and non-asthmatic cells (S7 Dataset). Generally, there is a good agreement between proteins and their corresponding genes in terms of their expression change directions (i.e. proteins up-regulated by HRV tend to be up-regulated at the mRNA level).

Bottom Line: The effects of rhinovirus RV-A16 on ALI cultures were compared.ALI cultures were readily infected by HRV.These genes are related to inflammatory pathways, epithelial structure and remodeling and cilium assembly and function, including those described previously (e.g. CCL5, CXCL10 and CX3CL1, MUC5AC, CDHR3), and novel ones that were identified for the first time in this study (e.g. CCRL1).

View Article: PubMed Central - PubMed

Affiliation: Merck Research Laboratories, Boston, Massachusetts, United States of America.

ABSTRACT

Objectives: Human airway epithelial cells are the principal target of human rhinovirus (HRV), a common cold pathogen that triggers the majority of asthma exacerbations. The objectives of this study were 1) to evaluate an in vitro air liquid interface cultured human airway epithelial cell model for HRV infection, and 2) to identify gene expression patterns associated with asthma intrinsically and/or after HRV infection using this model.

Methods: Air-liquid interface (ALI) human airway epithelial cell cultures were prepared from 6 asthmatic and 6 non-asthmatic donors. The effects of rhinovirus RV-A16 on ALI cultures were compared. Genome-wide gene expression changes in ALI cultures following HRV infection at 24 hours post exposure were further analyzed using RNA-seq technology. Cellular gene expression and cytokine/chemokine secretion were further evaluated by qPCR and a Luminex-based protein assay, respectively.

Main results: ALI cultures were readily infected by HRV. RNA-seq analysis of HRV infected ALI cultures identified sets of genes associated with asthma specific viral responses. These genes are related to inflammatory pathways, epithelial structure and remodeling and cilium assembly and function, including those described previously (e.g. CCL5, CXCL10 and CX3CL1, MUC5AC, CDHR3), and novel ones that were identified for the first time in this study (e.g. CCRL1).

Conclusions: ALI-cultured human airway epithelial cells challenged with HRV are a useful translational model for the study of HRV-induced responses in airway epithelial cells, given that gene expression profile using this model largely recapitulates some important patterns of gene responses in patients during clinical HRV infection. Furthermore, our data emphasize that both abnormal airway epithelial structure and inflammatory signaling are two important asthma signatures, which can be further exacerbated by HRV infection.

Show MeSH
Related in: MedlinePlus