Limits...
Endosymbiont dominated bacterial communities in a dwarf spider.

Vanthournout B, Hendrickx F - PLoS ONE (2015)

Bottom Line: These screening studies have been performed by means of specific primers that only amplify a selective set of endosymbionts, hampering the detection of unreported species in spiders.We also recovered Acinetobacter in high abundance in one individual.In total, more than 99% of approximately 4.5M high-throughput sequencing reads were restricted to these five bacterial species.

View Article: PubMed Central - PubMed

Affiliation: Department of Bioscience, Aarhus University, Aarhus-C, Denmark.

ABSTRACT
The microbial community of spiders is little known, with previous studies focussing primarily on the medical importance of spiders as vectors of pathogenic bacteria and on the screening of known cytoplasmic endosymbiont bacteria. These screening studies have been performed by means of specific primers that only amplify a selective set of endosymbionts, hampering the detection of unreported species in spiders. In order to have a more complete overview of the bacterial species that can be present in spiders, we applied a combination of a cloning assay, DGGE profiling and high-throughput sequencing on multiple individuals of the dwarf spider Oedothorax gibbosus. This revealed a co-infection of at least three known (Wolbachia, Rickettsia and Cardinium) and the detection of a previously unreported endosymbiont bacterium (Rhabdochlamydia) in spiders. 16S rRNA gene sequences of Rhabdochlamydia matched closely with those of Candidatus R. porcellionis, which is currently only reported as a pathogen from a woodlouse and with Candidatus R. crassificans reported from a cockroach. Remarkably, this bacterium appears to present in very high proportions in one of the two populations only, with all investigated females being infected. We also recovered Acinetobacter in high abundance in one individual. In total, more than 99% of approximately 4.5M high-throughput sequencing reads were restricted to these five bacterial species. In contrast to previously reported screening studies of terrestrial arthropods, our results suggest that the bacterial communities in this spider species are dominated by, or even restricted to endosymbiont bacteria. Given the high prevalence of endosymbiont species in spiders, this bacterial community pattern could be widespread in the Araneae order.

Show MeSH

Related in: MedlinePlus

Proportion of paired 100bp Illumina reads from the 16S rRNA-V4 and 16S rRNA-V3 region assigned to the different bacterial taxa in the dwarf spider Oedothorax gibbosus.Wol+ and Wol- are individual females from maternal lines infected with and without Wolbachia respectively. DAM and WAL represent samples consisting of ten pooled wild caught females from population Damvallei and Walenbos respectively. Numbers above bars represent the number of reads in millions.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4338242&req=5

pone.0117297.g001: Proportion of paired 100bp Illumina reads from the 16S rRNA-V4 and 16S rRNA-V3 region assigned to the different bacterial taxa in the dwarf spider Oedothorax gibbosus.Wol+ and Wol- are individual females from maternal lines infected with and without Wolbachia respectively. DAM and WAL represent samples consisting of ten pooled wild caught females from population Damvallei and Walenbos respectively. Numbers above bars represent the number of reads in millions.

Mentions: Phylotype analysis revealed that sequences matched to 210 (V3) and 327 (V4) different bacterial taxa. The distribution of the sequences among these different taxa was highly uneven and, with the exception of the pooled DAM sample, > 99% of the sequences were assigned to four bacterial taxa only. RDP based taxonomic classification of the most abundant sequences within each phylotype showed that 107 (V3) and 74 (V4) of these sequences showed similarity scores >80%. For all samples, the most frequent sequence was classified as Candidatus Rhabdochlamydia porcellionis (Fig. 1) and its sequence was identical to the 16S rRNA gene sequence obtained from cloning analysis. The other three bacteria that showed a high number of reads were classified as Wolbachia, Rickettsia and Candidatus Cardinium hertigii (Fig. 1). Also for Wolbachia and Rickettsia, representative sequences were identical to the sequences obtained from cloning. Only for the pooled DAM sample, an additional bacterium was found that represented 30% of the reads of this sample and closely matched with Acinetobacter.


Endosymbiont dominated bacterial communities in a dwarf spider.

Vanthournout B, Hendrickx F - PLoS ONE (2015)

Proportion of paired 100bp Illumina reads from the 16S rRNA-V4 and 16S rRNA-V3 region assigned to the different bacterial taxa in the dwarf spider Oedothorax gibbosus.Wol+ and Wol- are individual females from maternal lines infected with and without Wolbachia respectively. DAM and WAL represent samples consisting of ten pooled wild caught females from population Damvallei and Walenbos respectively. Numbers above bars represent the number of reads in millions.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4338242&req=5

pone.0117297.g001: Proportion of paired 100bp Illumina reads from the 16S rRNA-V4 and 16S rRNA-V3 region assigned to the different bacterial taxa in the dwarf spider Oedothorax gibbosus.Wol+ and Wol- are individual females from maternal lines infected with and without Wolbachia respectively. DAM and WAL represent samples consisting of ten pooled wild caught females from population Damvallei and Walenbos respectively. Numbers above bars represent the number of reads in millions.
Mentions: Phylotype analysis revealed that sequences matched to 210 (V3) and 327 (V4) different bacterial taxa. The distribution of the sequences among these different taxa was highly uneven and, with the exception of the pooled DAM sample, > 99% of the sequences were assigned to four bacterial taxa only. RDP based taxonomic classification of the most abundant sequences within each phylotype showed that 107 (V3) and 74 (V4) of these sequences showed similarity scores >80%. For all samples, the most frequent sequence was classified as Candidatus Rhabdochlamydia porcellionis (Fig. 1) and its sequence was identical to the 16S rRNA gene sequence obtained from cloning analysis. The other three bacteria that showed a high number of reads were classified as Wolbachia, Rickettsia and Candidatus Cardinium hertigii (Fig. 1). Also for Wolbachia and Rickettsia, representative sequences were identical to the sequences obtained from cloning. Only for the pooled DAM sample, an additional bacterium was found that represented 30% of the reads of this sample and closely matched with Acinetobacter.

Bottom Line: These screening studies have been performed by means of specific primers that only amplify a selective set of endosymbionts, hampering the detection of unreported species in spiders.We also recovered Acinetobacter in high abundance in one individual.In total, more than 99% of approximately 4.5M high-throughput sequencing reads were restricted to these five bacterial species.

View Article: PubMed Central - PubMed

Affiliation: Department of Bioscience, Aarhus University, Aarhus-C, Denmark.

ABSTRACT
The microbial community of spiders is little known, with previous studies focussing primarily on the medical importance of spiders as vectors of pathogenic bacteria and on the screening of known cytoplasmic endosymbiont bacteria. These screening studies have been performed by means of specific primers that only amplify a selective set of endosymbionts, hampering the detection of unreported species in spiders. In order to have a more complete overview of the bacterial species that can be present in spiders, we applied a combination of a cloning assay, DGGE profiling and high-throughput sequencing on multiple individuals of the dwarf spider Oedothorax gibbosus. This revealed a co-infection of at least three known (Wolbachia, Rickettsia and Cardinium) and the detection of a previously unreported endosymbiont bacterium (Rhabdochlamydia) in spiders. 16S rRNA gene sequences of Rhabdochlamydia matched closely with those of Candidatus R. porcellionis, which is currently only reported as a pathogen from a woodlouse and with Candidatus R. crassificans reported from a cockroach. Remarkably, this bacterium appears to present in very high proportions in one of the two populations only, with all investigated females being infected. We also recovered Acinetobacter in high abundance in one individual. In total, more than 99% of approximately 4.5M high-throughput sequencing reads were restricted to these five bacterial species. In contrast to previously reported screening studies of terrestrial arthropods, our results suggest that the bacterial communities in this spider species are dominated by, or even restricted to endosymbiont bacteria. Given the high prevalence of endosymbiont species in spiders, this bacterial community pattern could be widespread in the Araneae order.

Show MeSH
Related in: MedlinePlus