Limits...
Research on Emissions, Air quality, Climate, and Cooking Technologies in Northern Ghana (REACCTING): study rationale and protocol.

Dickinson KL, Kanyomse E, Piedrahita R, Coffey E, Rivera IJ, Adoctor J, Alirigia R, Muvandimwe D, Dove M, Dukic V, Hayden MH, Diaz-Sanchez D, Abisiba AV, Anaseba D, Hagar Y, Masson N, Monaghan A, Titiati A, Steinhoff DF, Hsu YY, Kaspar R, Brooks B, Hodgson A, Hannigan M, Oduro AR, Wiedinmyer C - BMC Public Health (2015)

Bottom Line: To be effective and generate useful insight into potential solutions, cookstove intervention studies must select cooking technologies that are appropriate for local socioeconomic conditions and cooking culture, and include interdisciplinary measurement strategies along a continuum of outcomes.REACCTING is well-poised to generate useful data on the impact of a cookstove intervention on a wide range of outcomes.By comparing different technologies side by side and employing an interdisciplinary approach to study this issue from multiple perspectives, this study may help to inform future efforts to improve health and quality of life for populations currently relying on open fires for their cooking needs.

View Article: PubMed Central - PubMed

Affiliation: National Center for Atmospheric Research, PO Box 3000, Boulder, CO, 80307, USA. katied@ucar.edu.

ABSTRACT

Background: Cooking over open fires using solid fuels is both common practice throughout much of the world and widely recognized to contribute to human health, environmental, and social problems. The public health burden of household air pollution includes an estimated four million premature deaths each year. To be effective and generate useful insight into potential solutions, cookstove intervention studies must select cooking technologies that are appropriate for local socioeconomic conditions and cooking culture, and include interdisciplinary measurement strategies along a continuum of outcomes.

Methods/design: REACCTING (Research on Emissions, Air quality, Climate, and Cooking Technologies in Northern Ghana) is an ongoing interdisciplinary randomized cookstove intervention study in the Kassena-Nankana District of Northern Ghana. The study tests two types of biomass burning stoves that have the potential to meet local cooking needs and represent different "rungs" in the cookstove technology ladder: a locally-made low-tech rocket stove and the imported, highly efficient Philips gasifier stove. Intervention households were randomized into four different groups, three of which received different combinations of two improved stoves, while the fourth group serves as a control for the duration of the study. Diverse measurements assess different points along the causal chain linking the intervention to final outcomes of interest. We assess stove use and cooking behavior, cooking emissions, household air pollution and personal exposure, health burden, and local to regional air quality. Integrated analysis and modeling will tackle a range of interdisciplinary science questions, including examining ambient exposures among the regional population, assessing how those exposures might change with different technologies and behaviors, and estimating the comparative impact of local behavior and technological changes versus regional climate variability and change on local air quality and health outcomes.

Discussion: REACCTING is well-poised to generate useful data on the impact of a cookstove intervention on a wide range of outcomes. By comparing different technologies side by side and employing an interdisciplinary approach to study this issue from multiple perspectives, this study may help to inform future efforts to improve health and quality of life for populations currently relying on open fires for their cooking needs.

Show MeSH

Related in: MedlinePlus

Traditional and improved stove technologies being compared in the REACCTING study, shown with Stove Use Monitors (SUMs) attached. Top left: traditional three-stone stove. Top right: traditional charcoal stove. Bottom left: Philips Smokeless Stove, Made in Lesotho (Southern Africa), Cost: ~US$125. Bottom right: Gyapa Wood-Burning Stove. Made in Accra. Cost: ~US$15-25.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4336492&req=5

Fig4: Traditional and improved stove technologies being compared in the REACCTING study, shown with Stove Use Monitors (SUMs) attached. Top left: traditional three-stone stove. Top right: traditional charcoal stove. Bottom left: Philips Smokeless Stove, Made in Lesotho (Southern Africa), Cost: ~US$125. Bottom right: Gyapa Wood-Burning Stove. Made in Accra. Cost: ~US$15-25.

Mentions: The selection of cookstove technologies for this study was guided by a number of considerations. Based on extensive feedback from households in the K-N district who tested several stove models during the pilot phase (2012–2013), the Philips Smokeless Woodstove and the Gyapa Wood Stove (Figure 4) were deemed to be potentially promising technologies for this population. The former is a gasifier stove produced in Lesotho. This stove is visually perceived as “high-tech”, requires power to perform properly, and has been observed to be a low emitting technology, Tier 4 stove, during lab testing [29]. The latter was designed and locally manufactured specifically to fit the cooking needs of the study population; this process is described below. These two stoves also represented two distinct rungs in the stove “ladder”. On the lower rung, the Gyapa stove is locally produced, affordable, and more fuel efficient than three stone fires, though not expected to drastically reduce cooking emissions. The Philips stove represents a higher-rung stove: it is widely believed to be among the cleanest biomass-burning stoves available and has been used in other intervention studies (e.g., http://www.projectsurya.org/). The Philips stove is also substantially more expensive than the Gyapa stove and must be imported into Ghana. Comparing these two stoves side by side in the same population thus presents an opportunity to generate novel data to inform the international debate between those advocating incremental versus transformative approaches to tackling the cookstove challenge.Figure 4


Research on Emissions, Air quality, Climate, and Cooking Technologies in Northern Ghana (REACCTING): study rationale and protocol.

Dickinson KL, Kanyomse E, Piedrahita R, Coffey E, Rivera IJ, Adoctor J, Alirigia R, Muvandimwe D, Dove M, Dukic V, Hayden MH, Diaz-Sanchez D, Abisiba AV, Anaseba D, Hagar Y, Masson N, Monaghan A, Titiati A, Steinhoff DF, Hsu YY, Kaspar R, Brooks B, Hodgson A, Hannigan M, Oduro AR, Wiedinmyer C - BMC Public Health (2015)

Traditional and improved stove technologies being compared in the REACCTING study, shown with Stove Use Monitors (SUMs) attached. Top left: traditional three-stone stove. Top right: traditional charcoal stove. Bottom left: Philips Smokeless Stove, Made in Lesotho (Southern Africa), Cost: ~US$125. Bottom right: Gyapa Wood-Burning Stove. Made in Accra. Cost: ~US$15-25.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4336492&req=5

Fig4: Traditional and improved stove technologies being compared in the REACCTING study, shown with Stove Use Monitors (SUMs) attached. Top left: traditional three-stone stove. Top right: traditional charcoal stove. Bottom left: Philips Smokeless Stove, Made in Lesotho (Southern Africa), Cost: ~US$125. Bottom right: Gyapa Wood-Burning Stove. Made in Accra. Cost: ~US$15-25.
Mentions: The selection of cookstove technologies for this study was guided by a number of considerations. Based on extensive feedback from households in the K-N district who tested several stove models during the pilot phase (2012–2013), the Philips Smokeless Woodstove and the Gyapa Wood Stove (Figure 4) were deemed to be potentially promising technologies for this population. The former is a gasifier stove produced in Lesotho. This stove is visually perceived as “high-tech”, requires power to perform properly, and has been observed to be a low emitting technology, Tier 4 stove, during lab testing [29]. The latter was designed and locally manufactured specifically to fit the cooking needs of the study population; this process is described below. These two stoves also represented two distinct rungs in the stove “ladder”. On the lower rung, the Gyapa stove is locally produced, affordable, and more fuel efficient than three stone fires, though not expected to drastically reduce cooking emissions. The Philips stove represents a higher-rung stove: it is widely believed to be among the cleanest biomass-burning stoves available and has been used in other intervention studies (e.g., http://www.projectsurya.org/). The Philips stove is also substantially more expensive than the Gyapa stove and must be imported into Ghana. Comparing these two stoves side by side in the same population thus presents an opportunity to generate novel data to inform the international debate between those advocating incremental versus transformative approaches to tackling the cookstove challenge.Figure 4

Bottom Line: To be effective and generate useful insight into potential solutions, cookstove intervention studies must select cooking technologies that are appropriate for local socioeconomic conditions and cooking culture, and include interdisciplinary measurement strategies along a continuum of outcomes.REACCTING is well-poised to generate useful data on the impact of a cookstove intervention on a wide range of outcomes.By comparing different technologies side by side and employing an interdisciplinary approach to study this issue from multiple perspectives, this study may help to inform future efforts to improve health and quality of life for populations currently relying on open fires for their cooking needs.

View Article: PubMed Central - PubMed

Affiliation: National Center for Atmospheric Research, PO Box 3000, Boulder, CO, 80307, USA. katied@ucar.edu.

ABSTRACT

Background: Cooking over open fires using solid fuels is both common practice throughout much of the world and widely recognized to contribute to human health, environmental, and social problems. The public health burden of household air pollution includes an estimated four million premature deaths each year. To be effective and generate useful insight into potential solutions, cookstove intervention studies must select cooking technologies that are appropriate for local socioeconomic conditions and cooking culture, and include interdisciplinary measurement strategies along a continuum of outcomes.

Methods/design: REACCTING (Research on Emissions, Air quality, Climate, and Cooking Technologies in Northern Ghana) is an ongoing interdisciplinary randomized cookstove intervention study in the Kassena-Nankana District of Northern Ghana. The study tests two types of biomass burning stoves that have the potential to meet local cooking needs and represent different "rungs" in the cookstove technology ladder: a locally-made low-tech rocket stove and the imported, highly efficient Philips gasifier stove. Intervention households were randomized into four different groups, three of which received different combinations of two improved stoves, while the fourth group serves as a control for the duration of the study. Diverse measurements assess different points along the causal chain linking the intervention to final outcomes of interest. We assess stove use and cooking behavior, cooking emissions, household air pollution and personal exposure, health burden, and local to regional air quality. Integrated analysis and modeling will tackle a range of interdisciplinary science questions, including examining ambient exposures among the regional population, assessing how those exposures might change with different technologies and behaviors, and estimating the comparative impact of local behavior and technological changes versus regional climate variability and change on local air quality and health outcomes.

Discussion: REACCTING is well-poised to generate useful data on the impact of a cookstove intervention on a wide range of outcomes. By comparing different technologies side by side and employing an interdisciplinary approach to study this issue from multiple perspectives, this study may help to inform future efforts to improve health and quality of life for populations currently relying on open fires for their cooking needs.

Show MeSH
Related in: MedlinePlus